HP FEM for reaction-diffusion equations I: Robust exponential convergence

被引:52
作者
Melenk, JM [1 ]
Schwab, C [1 ]
机构
[1] ETH Zurich, Seminar Angew Math, CH-8092 Zurich, Switzerland
关键词
hp finite element method; spectral element method; boundary layer; singularly perturbed problem; robust method;
D O I
10.1137/S0036142997317602
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A singularly perturbed reaction-diffusion equation in two dimensions is considered. We assume analyticity of the input data, i.e., the boundary of the domain is an analytic curve and the right-hand side is analytic. We show that the hp version of the finite element method leads to robust exponential convergence provided that one layer of needle elements of width O(p epsilon) is inserted near the domain boundary, that is, the rate of convergence is O(exp(-bp)) and independent of the perturbation parameter epsilon. Additionally, we show that the use of numerical quadrature for the evaluation of the stiffness matrix and the load vector retains the exponential rate of convergence. In particular, the spectral element method based on the use of a Gauss-Lobatto quadrature rule with (p + 1) x (p + 1) points yields robust exponential convergence.
引用
收藏
页码:1520 / 1557
页数:38
相关论文
共 24 条
[1]   THE P AND H-P VERSIONS OF THE FINITE-ELEMENT METHOD, BASIC PRINCIPLES AND PROPERTIES [J].
BABUSKA, I ;
SURI, M .
SIAM REVIEW, 1994, 36 (04) :578-632
[2]   THE H-P VERSION OF THE FINITE-ELEMENT METHOD FOR DOMAINS WITH CURVED BOUNDARIES [J].
BABUSKA, I ;
GUO, BQ .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1988, 25 (04) :837-861
[3]   THE OPTIMAL CONVERGENCE RATE OF THE P-VERSION OF THE FINITE-ELEMENT METHOD [J].
BABUSKA, I ;
SURI, M .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1987, 24 (04) :750-776
[4]   ANGLE CONDITION IN FINITE-ELEMENT METHOD [J].
BABUSKA, I ;
AZIZ, AK .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1976, 13 (02) :214-226
[5]   THE P-VERSION OF THE FINITE-ELEMENT METHOD [J].
BABUSKA, I ;
SZABO, BA ;
KATZ, IN .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1981, 18 (03) :515-545
[6]   THE EFFECT OF NUMERICAL QUADRATURE IN THE P-VERSION OF THE FINITE-ELEMENT METHOD [J].
BANERJEE, U ;
SURI, M .
MATHEMATICS OF COMPUTATION, 1992, 59 (199) :1-20
[7]  
Berger A., 1972, S MATH, V10, P295
[8]  
Bernardi Christine., 1992, APPROXIMATIONS SPECT
[9]  
DAVIS PJ, 1974, INTERPOLATION APPROX
[10]  
KELLOGG B, 1995, LECT NOTES PURE APPL, V167, P121