Ischemia is not required for arteriogenesis in zebrafish embryos

被引:53
作者
Gray, Caroline
Packham, Ian M.
Wurmser, Francois
Eastley, Nicholas C.
Hellewell, Paul G.
Ingham, Philip W.
Crossman, David C.
Chico, Timothy J. A.
机构
[1] MRC Centre for Developmental and Biomedical Genetics, University of Sheffield
[2] Lab. D38, University of Sheffield, Sheffield, S10 2TN, Firth Court
基金
英国医学研究理事会;
关键词
collateral circulation; angiogenesis; nitric oxide; blood flow; zebrafish;
D O I
10.1161/ATVBAHA.107.143990
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Objective-The role of ischemia in collateral vessel development (arteriogenesis) is a contentious issue that cannot be addressed using mammalian models. To investigate this, we developed models of arteriogenesis using the zebrafish embryo, which gains sufficient oxygenation via diffusion to prevent ischemia in response to arterial occlusion. Methods and Results-We studied gridlock mutant embryos that suffer a permanently occluded aorta and show that these restore aortic blood flow by collateral vessels. We phenocopied gridlock mutants by laser-induced proximal aortic occlusion in transgenic Fli1:eGFP/GATA1:dsRED embryos. Serial imaging showed these restore aortic blood flow via collateral vessels by recruitment of preexisting endothelium in a manner similar to gridlocks. Collateral aortic blood flow in gridlock mutants was dependent on both nitric oxide and myeloid cells. Confocal microscopy of transgenic gridlock/Fli1:eGFP mutants demonstrated no aberrant angiogenic response to the aortic occlusion. qPCR of HIF1 alpha expression confirmed the absence of hypoxia in this model system. Conclusions-We conclude that NO and myeloid cell-dependent collateral vessel development is an evolutionarily ancient response to arterial occlusion and is able to proceed in the absence of ischemia.
引用
收藏
页码:2135 / 2141
页数:7
相关论文
共 26 条
[1]   Monocyte activation in angiogenesis and collateral growth in the rabbit hindlimb [J].
Arras, M ;
Ito, WD ;
Scholz, D ;
Winkler, B ;
Schaper, J ;
Schaper, W .
JOURNAL OF CLINICAL INVESTIGATION, 1998, 101 (01) :40-50
[2]  
CARPENTIER G, 2007, STACK TIMELAPSE ARRO
[3]   Selective regulation of arterial branching morphogenesis by synectin [J].
Chittenden, Thomas W. ;
Claes, Filip ;
Lanahan, Anthony A. ;
Autiero, Monica ;
Palac, Robert T. ;
Tkachenko, Eugene V. ;
Elfenbein, Arye ;
de Almodovar, Carmen Ruiz ;
Dedkov, Eduard ;
Tomanek, Robert ;
Li, Weiming ;
Westmore, Michael ;
Singh, JaiPal ;
Horowitz, Arie ;
Mulligan-Kehoe, Mary Jo ;
Moodie, Karen L. ;
Zhuang, Zhen W. ;
Carmeliet, Peter ;
Simons, Michael .
DEVELOPMENTAL CELL, 2006, 10 (06) :783-795
[4]   Role of ischemia and of hypoxia-inducible genes in arteriogenesis after femoral artery occlusion in the rabbit [J].
Deindl, E ;
Buschmann, I ;
Hoefer, IE ;
Podzuweit, T ;
Boengler, K ;
Vogel, S ;
van Royen, N ;
Fernandez, B ;
Schaper, W .
CIRCULATION RESEARCH, 2001, 89 (09) :779-786
[5]  
HE Y, 2006, J CLIN INVEST
[6]   Pathophysiology of collateral development [J].
Heil, M ;
Schaper, W .
CORONARY ARTERY DISEASE, 2004, 15 (07) :373-378
[7]   Collateral artery growth (arteriogenesis) after experimental arterial occlusion is impaired in mice lacking CC-chemokine receptor-2 [J].
Heil, M ;
Ziegelhoeffer, T ;
Wagner, S ;
Fernández, B ;
Helisch, A ;
Martin, S ;
Tribulova, S ;
Kuziel, WA ;
Bachmann, G ;
Schaper, W .
CIRCULATION RESEARCH, 2004, 94 (05) :671-677
[8]   Zebrafish early macrophages colonize cephalic mesenchyme and developing brain, retina, and epidermis through, a M-CSF receptor-dependent invasive process [J].
Herbomel, P ;
Thisse, B ;
Thisse, C .
DEVELOPMENTAL BIOLOGY, 2001, 238 (02) :274-288
[9]  
HUMBLE R, 2003, SCOT MED J, V48, P125
[10]   Influence of hypoxia and of hypoxemia on the development of cardiac activity in zebrafish larvae [J].
Jacob, E ;
Drexel, M ;
Schwerte, T ;
Pelster, B .
AMERICAN JOURNAL OF PHYSIOLOGY-REGULATORY INTEGRATIVE AND COMPARATIVE PHYSIOLOGY, 2002, 283 (04) :R911-R917