Direct data-driven recursive controller unfalsitication with analytic update

被引:39
作者
van Helvoort, Jeroen [1 ]
de Jager, Bram [1 ]
Steinbuch, Maarten [1 ]
机构
[1] Tech Univ Eindhoven, Control Syst Technol, NL-5600 MB Eindhoven, Netherlands
关键词
adaptive control; self-tuning control; stability analysis; unfalsified control; ellipsoidal unfalsified set; switching control;
D O I
10.1016/j.automatica.2007.04.026
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Unfalsified control is a data-driven, plant-model-free controller design method, which recursively falsifies controllers that fail to meet the specified performance requirement. In ellipsoidal unfalsified control, the region of controllers that are unfalsified, the unfalsified set, is described by an ellipsoid. Due to the combination of the performance requirement and controller structure, the approximate update of the unfalsified set can be computed analytically, resulting in a computationally cheap algorithm. Conditions for stability of ellipsoidal unfalsified control are presented, and the effectiveness of the proposed algorithm is shown in a simulation. (c) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2034 / 2046
页数:13
相关论文
共 21 条
[1]  
ASTRON K, 1995, ADAVPTIVE CONTROL
[2]  
Boyd S., 1994, LINEAR MATRIX INEQUA, V15
[3]   Unfalsified model reference adaptive control using the ellipsoid algorithm [J].
Cabral, FB ;
Safonov, MG .
INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2004, 18 (08) :683-696
[4]   Validation of linear fractional uncertain models: Solutions via matrix inequalities [J].
Chen, J ;
Wang, SN .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1996, 41 (06) :844-849
[5]  
Henrion D, 1998, IEEE DECIS CONTR P, P1759, DOI 10.1109/CDC.1998.758550
[6]   A REGULARIZED ITERATIVE IMAGE-RESTORATION ALGORITHM [J].
KATSAGGELOS, AK ;
BIEMOND, J ;
SCHAFER, RW ;
MERSEREAU, RM .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1991, 39 (04) :914-929
[7]  
Kosut RL, 2000, IEEE DECIS CONTR P, P1243, DOI 10.1109/CDC.2000.912025
[8]   State bounding with ellipsoidal set description of the uncertainty [J].
Maksarov, DG ;
Norton, JP .
INTERNATIONAL JOURNAL OF CONTROL, 1996, 65 (05) :847-866
[9]  
PAUL A, 2005, MULTI CONTROLLED ADA
[10]  
Paul A, 2005, IEEE DECIS CONTR P, P4815