Two Glycosylation Sites in H5N1 Influenza Virus Hemagglutinin That Affect Binding Preference by Computer-Based Analysis

被引:22
作者
Chen, Wentian [1 ]
Sun, Shisheng [2 ]
Li, Zheng [1 ]
机构
[1] NW Univ Xian, Coll Life Sci, Lab Funct Glyc, Xian 710069, Peoples R China
[2] Johns Hopkins Univ, Div Clin Chem, Dept Pathol, Baltimore, MD USA
来源
PLOS ONE | 2012年 / 7卷 / 06期
基金
对外科技合作项目(国际科技项目);
关键词
MOLECULAR-DYNAMICS; RECEPTOR-BINDING; GLYCAN TOPOLOGY; PROTEIN; SPECIFICITY; RECOGNITION; FUSION; GLYCOPROTEIN; MUTATIONS; SEQUENCE;
D O I
10.1371/journal.pone.0038794
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Increasing numbers of H5N1 influenza viruses (IVs) are responsible for human deaths, especially in North Africa and Southeast Asian. The binding of hemagglutinin (HA) on the viral surface to host sialic acid (SA) receptors is a requisite step in the infection process. Phylogenetic analysis reveals that H5N1 viruses can be divided into 10 clades based on their HA sequences, with most human IVs centered from clade 1 and clade 2.1 to clade 2.3. Protein sequence alignment in various clades indicates the high conservation in the receptor-binding domains (RBDs) is essential for binding with the SA receptor. Two glycosylation sites, 158N and 169N, also participate in receptor recognition. In the present work, we attempted to construct a serial H5N1 HA models including diverse glycosylated HAs to simulate the binding process with various SA receptors in silico. As the SA-alpha-2,3-Gal and SA-alpha-2,6-Gal receptor adopted two distinctive topologies, straight and fishhook-like, respectively, the presence of N-glycans at 158N would decrease the affinity of HA for all of the receptors, particularly SA-alpha-2,6-Gal analogs. The steric clashes of the huge glycans shown at another glycosylation site, 169N, located on an adjacent HA monomer, would be more effective in preventing the binding of SA-alpha-2,3-Gal analogs.
引用
收藏
页数:14
相关论文
共 61 条
[1]  
[Anonymous], J COMPUT CHEM
[2]   The influenza virus resource at the national center for biotechnology information [J].
Bao, Yiming ;
Bolotov, Pavel ;
Dernovoy, Dmitry ;
Kiryutin, Boris ;
Zaslavsky, Leonid ;
Tatusova, Tatiana ;
Ostell, Jim ;
Lipman, David .
JOURNAL OF VIROLOGY, 2008, 82 (02) :596-601
[3]   SWEET - WWW-based rapid 3D construction of oligo- and polysaccharides [J].
Bohne, A ;
Lang, E ;
von der Lieth, CW .
BIOINFORMATICS, 1999, 15 (09) :767-768
[4]  
Bohne A, 2002, Pac Symp Biocomput, P285
[5]   GlyProt:: in silico glycosylation of proteins [J].
Bohne-Lang, A ;
von der Lieth, CW .
NUCLEIC ACIDS RESEARCH, 2005, 33 :W214-W219
[6]   Glycan topology determines human adaptation of avian H5N1 virus hemagglutinin [J].
Chandrasekaran, Aarthi ;
Srinivasan, Aravind ;
Raman, Rahul ;
Viswanathan, Karthik ;
Raguram, S. ;
Tumpey, Terrence M. ;
Sasisekharan, V. ;
Sasisekharan, Ram .
NATURE BIOTECHNOLOGY, 2008, 26 (01) :107-113
[7]   Vaccine design of hemagglutinin glycoprotein against influenza [J].
Chen, Juine-Ruey ;
Ma, Che ;
Wong, Chi-Huey .
TRENDS IN BIOTECHNOLOGY, 2011, 29 (09) :426-434
[8]   Avian influenza virus exhibits rapid evolutionary dynamics [J].
Chen, Rubing ;
Holmes, Edward C. .
MOLECULAR BIOLOGY AND EVOLUTION, 2006, 23 (12) :2336-2341
[9]   Glycosylation Focuses Sequence Variation in the Influenza A Virus H1 Hemagglutinin Globular Domain [J].
Das, Suman R. ;
Puigbo, Pere ;
Hensley, Scott E. ;
Hurt, Darrell E. ;
Bennink, Jack R. ;
Yewdell, Jonathan W. .
PLOS PATHOGENS, 2010, 6 (11)
[10]  
DeLano W. L., 2002, ADV BIOL CHEM, V8