Excess FoxG1 causes overgrowth of the neural tube

被引:46
作者
Ahlgren, S
Vogt, P
Bronner-Fraser, M
机构
[1] CALTECH, Div Biol, Pasadena, CA 91125 USA
[2] Scripps Res Inst, Dept Mol & Expt Med, La Jolla, CA 92037 USA
来源
JOURNAL OF NEUROBIOLOGY | 2003年 / 57卷 / 03期
关键词
FoxG1; chick; telencephalon; mesencephalon; cell death; growth control;
D O I
10.1002/neu.10287
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The winged helix transcription factor FoxG1 (Bf-1, qin) plays multiple roles in the development of the telencephalon, with different parts of the protein affecting either proliferation or differentiation. We examined the consequences of over-expression, via retroviral expression, of FoxG1 on the growth of different regions of the chicken brain. Excess expression of FoxG1 caused a thickening of the neuroepithelium, and ultimately large outgrowths of the telencephalon and mesencephalon. In contrast, the myelencephalon appeared unaffected, exhibiting normal apoptosis and growth characteristics. A DNA binding defective form of FoxG1 did not exhibit these abnormalities, suggesting that these effects are due to FoxG1's function as a transcriptional repressor. To examine the means by which excess FoxG1 caused overgrowth of the brain, we examined alterations in cell proliferation and death. No increase in proliferation was noted in any portion of the neural tube, rather a significant decrease in neuroepithelial apoptosis was seen. These results demonstrate a previously unrecognized role for winged helix factors in the regulation of neural cell apoptosis. (C) 2003 Wiley Periodicals, Inc.
引用
收藏
页码:337 / 349
页数:13
相关论文
共 41 条
[1]   Inhibition of Sonic hedgehog signaling in vivo results in craniofacial neural crest cell death [J].
Ahlgren, SC ;
Bronner-Fraser, M .
CURRENT BIOLOGY, 1999, 9 (22) :1304-1314
[2]   Human ICE/CED-3 protease nomenclature [J].
Alnemri, ES ;
Livingston, DJ ;
Nicholson, DW ;
Salvesen, G ;
Thornberry, NA ;
Wong, WW ;
Yuan, JY .
CELL, 1996, 87 (02) :171-171
[3]  
Bourguignon C, 1998, DEVELOPMENT, V125, P4889
[4]   Protein kinase SGK mediates survival signals by phosphorylating the forkhead transcription factor FKHRL1 (FOXO3a) [J].
Brunet, A ;
Park, J ;
Tran, H ;
Hu, LS ;
Hemmings, BA ;
Greenberg, ME .
MOLECULAR AND CELLULAR BIOLOGY, 2001, 21 (03) :952-965
[5]   Akt promotes cell survival by phosphorylating and inhibiting a forkhead transcription factor [J].
Brunet, A ;
Bonni, A ;
Zigmond, MJ ;
Lin, MZ ;
Juo, P ;
Hu, LS ;
Anderson, MJ ;
Arden, KC ;
Blenis, J ;
Greenberg, ME .
CELL, 1999, 96 (06) :857-868
[6]   Forkhead transcription factors: Key players in development and metabolism [J].
Carlsson, P ;
Mahlapuu, M .
DEVELOPMENTAL BIOLOGY, 2002, 250 (01) :1-23
[7]   Apaf1 (CED-4 homolog) regulates programmed cell death in mammalian development [J].
Cecconi, F ;
Alvarez-Bolado, G ;
Meyer, BI ;
Roth, KA ;
Gruss, P .
CELL, 1998, 94 (06) :727-737
[8]   AVIAN CELLULAR HOMOLOG OF THE QIN ONCOGENE [J].
CHANG, HW ;
LI, J ;
KRETZSCHMAR, D ;
VOGT, PK .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (02) :447-451
[9]   CO-CRYSTAL STRUCTURE OF THE HNF-3/FORK HEAD DNA-RECOGNITION MOTIF RESEMBLES HISTONE-H5 [J].
CLARK, KL ;
HALAY, ED ;
LAI, ES ;
BURLEY, SK .
NATURE, 1993, 364 (6436) :412-420
[10]   Forkhead transcription factor FKHR-L1 modulates cytokine-dependent transcriptional regulation of p27KIP1 [J].
Dijkers, PF ;
Medema, RH ;
Pals, C ;
Banerji, L ;
Thomas, NSB ;
Lam, EWF ;
Burgering, BMT ;
Raaijmakers, JAM ;
Lammers, JWJ ;
Koenderman, L ;
Coffer, PJ .
MOLECULAR AND CELLULAR BIOLOGY, 2000, 20 (24) :9138-9148