Genome organization and evolution of the AVR-Pita avirulence gene family in the Magnaporthe grisea species complex

被引:106
作者
Khang, Chang Hyun [1 ]
Park, Sook-Young [1 ,2 ,3 ]
Lee, Yong-Hwan [2 ,3 ]
Valent, Barbara [4 ]
Kang, Seogchan [1 ]
机构
[1] Penn State Univ, Dept Plant Pathol, University Pk, PA 16802 USA
[2] Seoul Natl Univ, Sch Agr Biotechnol, Seoul 151742, South Korea
[3] Seoul Natl Univ, Ctr Agr Biomat, Seoul 151742, South Korea
[4] Kansas State Univ, Dept Plant Pathol, Manhattan, KS 66506 USA
关键词
D O I
10.1094/MPMI-21-5-0658
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The avirulence (AVR) gene AVR-Pita in Magnaporthe oryzae prevents the fungus from infecting rice cultivars containing the resistance gene Pi-ta. A survey of isolates of the M. grisea species complex from diverse hosts showed that AVR-Pita is a member of a gene family, which led us to rename it to AVR-Pita1. Avirulence function, distribution, and genomic context of two other members, named AVR-Pita2 and AVR-Pita3, were characterized. AVR-Pita2, but not AVR-Pita3, was functional as an AVR gene corresponding to Pi-ta. The AVR-Pita1 and AVR-Pita2 genes were present in isolates of both M. oryzae and M. grisea, whereas the AVR-Pita3 gene was present only in isolates of M. oryzae. Orthologues of members of the AVR-Pita family could not be found in any fungal species sequenced to date, suggesting that the gene family may be unique to the M. grisea species complex. The genomic context of its members was analyzed in eight strains. The AVR-Pita1 and AVR-Pita2 genes in some isolates appeared to be located near telomeres and Ranked by diverse repetitive DNA elements, suggesting that frequent deletion or amplification of these genes within the M. grisea species complex might have resulted from recombination mediated by repetitive DNA elements.
引用
收藏
页码:658 / 670
页数:13
相关论文
共 89 条
[1]   Pseudomonas type III effector AvrPtoB induces plant disease susceptibility by inhibition of host programmed cell death [J].
Abramovitch, RB ;
Kim, YJ ;
Chen, SR ;
Dickman, MB ;
Martin, GB .
EMBO JOURNAL, 2003, 22 (01) :60-69
[2]   BASIC LOCAL ALIGNMENT SEARCH TOOL [J].
ALTSCHUL, SF ;
GISH, W ;
MILLER, W ;
MYERS, EW ;
LIPMAN, DJ .
JOURNAL OF MOLECULAR BIOLOGY, 1990, 215 (03) :403-410
[3]  
[Anonymous], 1989, Molecular Cloning
[4]   Genetic and molecular evidence that the Pseudomonas syringae type III effector protein AvrRpt2 is a cysteine protease [J].
Axtell, MJ ;
Chisholm, ST ;
Dahlbeck, D ;
Staskawicz, BJ .
MOLECULAR MICROBIOLOGY, 2003, 49 (06) :1537-1546
[5]   Xanthomonas oryzae pv. oryzae avirulence genes contribute differently and specifically to pathogen aggressiveness [J].
Bai, JF ;
Choi, SH ;
Ponciano, G ;
Leung, H ;
Leach, JE .
MOLECULAR PLANT-MICROBE INTERACTIONS, 2000, 13 (12) :1322-1329
[6]   A putative polyketide synthase peptide synthetase from Magnaporthe grisea signals pathogen attack to resistant rice [J].
Böhnert, HU ;
Fudal, I ;
Dioh, W ;
Tharreau, D ;
Notteghem, JL ;
Lebrun, MH .
PLANT CELL, 2004, 16 (09) :2499-2513
[7]   RNAs from all categories generate retrosequences that may be exapted as novel genes or regulatory elements [J].
Brosius, J .
GENE, 1999, 238 (01) :115-134
[8]   A single amino acid difference distinguishes resistant and susceptible alleles of the rice blast resistance gene Pi-ta [J].
Bryan, GT ;
Wu, KS ;
Farrall, L ;
Jia, YL ;
Hershey, HP ;
McAdams, SA ;
Faulk, KN ;
Donaldson, GK ;
Tarchini, R ;
Valent, B .
PLANT CELL, 2000, 12 (11) :2033-2045
[9]   EVOLUTION OF THE DISPERSED SUC GENE FAMILY OF SACCHAROMYCES BY REARRANGEMENTS OF CHROMOSOME TELOMERES [J].
CARLSON, M ;
CELENZA, JL ;
ENG, FJ .
MOLECULAR AND CELLULAR BIOLOGY, 1985, 5 (11) :2894-2902
[10]   Haustorially expressed secreted proteins from flax rust are highly enriched for avirulence elicitors [J].
Catanzariti, AM ;
Dodds, PN ;
Lawrence, GJ ;
Ayliffe, MA ;
Ellis, JG .
PLANT CELL, 2006, 18 (01) :243-256