Validation of a compartmental population balance model of an industrial leaching process:: The Silgrain® process

被引:13
作者
Díez, MD
Fjeld, M
Andersen, E
Lie, B
机构
[1] Telemark Univ Coll, N-3901 Porsgrunn, Norway
[2] Fjeld Consulting, N-0257 Oslo, Norway
[3] Elkem Res, N-4675 Kristiansand, Norway
关键词
model validation; parameter identification; particulate processes; population balance; leaching; hydrometallurgy;
D O I
10.1016/j.ces.2005.01.047
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Population balance (PB) models have become the most widely used tool for dynamic modeling of particulate processes. The application of PB models for prediction purposes is attracting significant interest. A parameter estimation and a quantitative validation of PB models should be carried out before the model can be applied for prediction. PB models are large-scale and nonlinear in the parameters. Moreover, the availability of measurements is typically limited, especially at industrial level, which makes the parameters poorly identifiable from experimental data. This paper shows how a systematic method for analyzing parameter sensitivity and collinearity among parameters, provides a subset of parameters that can easily be identified from the available data. A compartmental PB model of an industrial hydrometallurgical leaching plant is developed. Parameter identifiability of the model parameters is analyzed, and experimental data from the industrial plant are used to identify the corresponding subset of parameters and to verify some of the main assumptions of the model. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:229 / 245
页数:17
相关论文
共 53 条
[1]  
AAS H, 1971, LIGHT METALS 1971, P650
[2]   Simulation of the population balances for liquid-liquid systems in a nonideal stirred tank. Part 2 - parameter fitting and the use of the multiblock model for dense dispersions [J].
Alopaeus, V ;
Koskinen, J ;
Keskinen, KI ;
Majander, J .
CHEMICAL ENGINEERING SCIENCE, 2002, 57 (10) :1815-1825
[3]   Simulation of the population balances for liquid-liquid systems in a nonideal stirred tank. Part 1 Description and qualitative validation of the model [J].
Alopaeus, V ;
Koskinen, J ;
Keskinen, KI .
CHEMICAL ENGINEERING SCIENCE, 1999, 54 (24) :5887-5899
[4]  
[Anonymous], 1993, System Modeling and Identification
[5]  
Bard Y., 1974, Nonlinear Parameter Estimation
[6]  
Beck J.V., 1977, PARAMETER ESTIMATION
[7]   MODIFIED MWR APPROACH - APPLICATION TO AGGLOMERATIVE PRECIPITATION [J].
BHATIA, SK ;
CHAKRABORTY, D .
AICHE JOURNAL, 1992, 38 (06) :868-878
[8]  
Brenan K.E., 1995, Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations
[9]   Practical identifiability of ASM2d parameters -: systematic selection and tuning of parameter subsets [J].
Brun, R ;
Kühni, M ;
Siegrist, H ;
Gujer, W ;
Reichert, P .
WATER RESEARCH, 2002, 36 (16) :4113-4127
[10]   Practical identifiability analysis of large environmental simulation models [J].
Brun, R ;
Reichert, P ;
Künsch, HR .
WATER RESOURCES RESEARCH, 2001, 37 (04) :1015-1030