Theoretical study of the structural and spectroscopic properties of stellacyanin

被引:43
作者
De Kerpel, JOA
Pierloot, K
Ryde, U
Roos, BO
机构
[1] Univ Louvain, Dept Chem, B-3001 Heverlee, Belgium
[2] Univ Lund, Ctr Chem, Dept Theoret Chem, S-22100 Lund, Sweden
来源
JOURNAL OF PHYSICAL CHEMISTRY B | 1998年 / 102卷 / 23期
关键词
D O I
10.1021/jp980455z
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The electronic spectrum of the azurin Met121Gln mutant, a model of the blue copper protein stellacyanin, has been studied by ab initio multiconfigurational second-order perturbation theory (the CASPT2 method), including the effect of the protein and solvent by point charges. The six lowest electronic transitions have been calculated and assigned with an error of less than 2400 cm(-1). The ground-state singly occupied orbital is found to be a predominantly pi antibonding orbital involving Cu3d and S(cys)3p(pi). However, it also contains a significant amount (18%) of Cu-S-cys sigma antibonding character. This a interaction is responsible for the appearance in the absorption spectrum of a band at 460 nm, with a significantly higher intensity than observed for other, axial, type 1 copper proteins (i.e., plastocyanin or azurin). The pi-sigma mixing is caused by the axial glutamine ligand binding at a much shorter distance to copper than the corresponding methionine ligand in the normal blue copper proteins. This explains why, based on its spectral properties, stellacyanin is classified among the rhombic type 1 copper proteins, although its structure is clearly trigonal, as it is for the axial proteins. Calculations have also been performed on structures where the glutamine model coordinates to the copper ion via the deprotonated NE atom instead of the OF atom. However, the resulting transition energies do not resemble the experimental spectrum obtained at normal or elevated pH. Thus, the results do not confirm the suggestion that the coordinating atom of glutamine changes at high PH.
引用
收藏
页码:4638 / 4647
页数:10
相关论文
共 32 条
[21]  
PIERLOOT K, 1995, THEOR CHIM ACTA, V90, P87, DOI 10.1007/BF01113842
[22]   Theoretical study of the electronic spectrum of plastocyanin [J].
Pierloot, K ;
DeKerpel, JOA ;
Ryde, U ;
Roos, BO .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1997, 119 (01) :218-226
[23]   SUCCESSIVE BINDING-ENERGIES OF FE(CO)(5)(+) [J].
RICCA, A ;
BAUSCHLICHER, CW .
JOURNAL OF PHYSICAL CHEMISTRY, 1994, 98 (49) :12899-12903
[24]  
RICE JE, 1995, MULLIKEN VERSION 2 3
[25]   X-RAY-ANALYSIS AND SPECTROSCOPIC CHARACTERIZATION OF M121Q AZURIN - A COPPER SITE MODEL FOR STELLACYANIN [J].
ROMERO, A ;
HOITINK, CWG ;
NAR, H ;
HUBER, R ;
MESSERSCHMIDT, A ;
CANTERS, GW .
JOURNAL OF MOLECULAR BIOLOGY, 1993, 229 (04) :1007-1021
[26]   Multiconfigurational perturbation theory: Applications in electronic spectroscopy [J].
Roos, BO ;
Andersson, K ;
Fulscher, MP ;
Malmqvist, PA ;
SerranoAndres, L ;
Pierloot, K ;
Merchan, M .
ADVANCES IN CHEMICAL PHYSICS, VOL XCIII, 1996, 93 :219-331
[27]   The cupric geometry of blue copper proteins is not strained [J].
Ryde, U ;
Olsson, MHM ;
Pierloot, K ;
Roos, BO .
JOURNAL OF MOLECULAR BIOLOGY, 1996, 261 (04) :586-596
[28]  
RYDE U, 1998, IN PRESS ENCY COMPUT
[29]  
SCHAFER A, 1992, J CHEM PHYS, V97, P571
[30]  
THOMANN H, 1991, J AM CHEM SOC, V113