Reactive oxygen species reduce myofibrillar Ca2+ sensitivity in fatiguing mouse skeletal muscle at 37°C

被引:126
作者
Moopanar, TR [1 ]
Allen, DG [1 ]
机构
[1] Univ Sydney, Sch Med Sci, Inst Biomed Sci, Sydney, NSW 2006, Australia
来源
JOURNAL OF PHYSIOLOGY-LONDON | 2005年 / 564卷 / 01期
关键词
D O I
10.1113/jphysiol.2005.083519
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The mechanisms of muscle fatigue were studied in small muscle bundles and single fibres isolated from the flexor digitorum brevis of the mouse. Fatigue caused by repeated isometric tetani was accelerated at body temperature (37 degrees C) when compared to room temperature (22 degrees C). The membrane-permeant reactive oxygen species (ROS) scavenger, Tiron (5 mm), had no effect on the rate of fatigue at 22 degrees C but slowed the rate of fatigue at 37 degrees C to that observed at 22 degrees C. Single fibres were microinjected with indo-1 to measure intracellular calcium. In the accelerated fatigue at 37 degrees C the tetanic [Ca2+](i) did not change significantly and the decline of maximum Ca2+-activated force was similar to that observed at 22 degrees C. The cause of the greater rate of fatigue at 37 degrees C was a large fall in myofibrillar Ca2+ sensitivity. In the presence of Tiron, the large fall in Ca2+ sensitivity was abolished and the usual decline in tetanic [Ca2+](i) was observed. This study confirms the importance of ROS in fatigue at 37 degrees C and shows that the mechanism of action of ROS is a decline in myofibrillar Ca2+ sensitivity.
引用
收藏
页码:189 / 199
页数:11
相关论文
共 43 条
[1]   THE EFFECTS OF CAFFEINE ON INTRACELLULAR CALCIUM, FORCE AND THE RATE OF RELAXATION OF MOUSE SKELETAL-MUSCLE [J].
ALLEN, DG ;
WESTERBLAD, H .
JOURNAL OF PHYSIOLOGY-LONDON, 1995, 487 (02) :331-342
[2]   Role of phosphate and calcium stores in muscle fatigue [J].
Allen, DG ;
Westerblad, H .
JOURNAL OF PHYSIOLOGY-LONDON, 2001, 536 (03) :657-665
[3]   MUSCLE-CELL FUNCTION DURING PROLONGED ACTIVITY - CELLULAR MECHANISMS OF FATIGUE [J].
ALLEN, DG ;
LANNERGREN, J ;
WESTERBLAD, H .
EXPERIMENTAL PHYSIOLOGY, 1995, 80 (04) :497-527
[4]   Effect of hydrogen peroxide and dithiothreitol on contractile function of single skeletal muscle fibres from the mouse [J].
Andrade, FH ;
Reid, MB ;
Allen, DG ;
Westerblad, H .
JOURNAL OF PHYSIOLOGY-LONDON, 1998, 509 (02) :565-575
[5]  
Andrade FH, 2001, FASEB J, V15, P309
[6]   Oxidant activity in skeletal muscle fibers is influenced by temperature, CO2 level, and muscle-derived nitric oxide [J].
Arbogast, S ;
Reid, MB .
AMERICAN JOURNAL OF PHYSIOLOGY-REGULATORY INTEGRATIVE AND COMPARATIVE PHYSIOLOGY, 2004, 287 (04) :R698-R705
[7]  
BAKKER AJ, 1993, J PHYSIOL-LONDON, V460, P1
[8]   Hydrogen peroxide disrupts Ca2+ release from the sarcoplasmic reticulum of rat skeletal muscle fibers [J].
Brotto, MAP ;
Nosek, TM .
JOURNAL OF APPLIED PHYSIOLOGY, 1996, 81 (02) :731-737
[9]   PHYSIOLOGICAL TYPES AND HISTOCHEMICAL PROFILES IN MOTOR UNITS OF CAT GASTROCNEMIUS [J].
BURKE, RE ;
LEVINE, DN ;
TSAIRIS, P ;
ZAJAC, FE .
JOURNAL OF PHYSIOLOGY-LONDON, 1973, 234 (03) :723-+
[10]   Superoxide, hydroxyl radical, and hydrogen peroxide effects on single-diaphragm fiber contractile apparatus [J].
Callahan, LA ;
She, ZW ;
Nosek, TM .
JOURNAL OF APPLIED PHYSIOLOGY, 2001, 90 (01) :45-54