Effect of magnesium substitution on the cycling behavior of lithium nickel cobalt oxide

被引:108
作者
Pouillerie, C
Perton, F
Biensan, P
Pérès, JP
Broussely, M
Delmas, C
机构
[1] Inst Chim Mat Condensee Bordeaux, CNRS, F-33608 Pessac, France
[2] Ecole Natl Super Chim & Phys Bordeaux, F-33608 Pessac, France
[3] SAFT, Direct Rech, F-33074 Bordeaux, France
关键词
lithium-ion batteries; lithium batteries; substituted lithium nickelate; cycling; Rietveld refinement;
D O I
10.1016/S0378-7753(00)00653-4
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
LiNi0.91Co0.009O2 and LiNi0.86Co0.09Mg0.05O2 phases were comparatively cycled in 4/5 'A'-size lithium-ion cells (500 cycles, 60 degreesC, C rate, 2 h floating at 4.1V at each charge). The Mg-Co substituted positive electrodes exhibit a very small capacity fading versus the Co substituted one. Comparative Rietveld refinements of the XRD patterns before and after cycling show unambiguously that an irreversible migration of Mg2+ ions from the slabs to the interslab spaces occurs upon cycling. The variation of the cell parameters of the LixNi0.86Co0.09Mg0.05O2 deintercalated phases, obtained during the 1st and the 501st charges, were determined. The smaller changes observed after the Mg-migration suggest that the mechanical constraints typically observed during lithium intercalation-deintercalation are reduced by the simultaneous presence of magnesium ions in the lithium sites and of vacancies in the slabs, leading to a smaller capacity fading. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:293 / 302
页数:10
相关论文
共 26 条
[1]   Thermal behavior of Li1-yNiO2 and the decomposition mechanism [J].
Arai, H ;
Okada, S ;
Sakurai, Y ;
Yamaki, J .
SOLID STATE IONICS, 1998, 109 (3-4) :295-302
[2]   Lithium insertion into host materials: the key to success for Li ion batteries [J].
Broussely, M ;
Biensan, P ;
Simon, B .
ELECTROCHIMICA ACTA, 1999, 45 (1-2) :3-22
[3]   LI/LIXNIO2 AND LI/LIXCOO2 RECHARGEABLE SYSTEMS - COMPARATIVE-STUDY AND PERFORMANCE OF PRACTICAL CELLS [J].
BROUSSELY, M ;
PERTON, F ;
LABAT, J ;
STANIEWICZ, RJ ;
ROMERO, A .
JOURNAL OF POWER SOURCES, 1993, 43 (1-3) :209-216
[4]   LIXNIO2, A PROMISING CATHODE FOR RECHARGEABLE LITHIUM BATTERIES [J].
BROUSSELY, M ;
PERTON, F ;
BIENSAN, P ;
BODET, JM ;
LABAT, J ;
LECERF, A ;
DELMAS, C ;
ROUGIER, A ;
PERES, JP .
JOURNAL OF POWER SOURCES, 1995, 54 (01) :109-114
[5]  
Carvajal J. R., 1990, SAT M POWD DIFFR 15, P127
[6]   NiO2 obtained by electrochemical lithium deintercalation from lithium nickelate:: Structural modifications [J].
Croguennec, L ;
Pouillerie, C ;
Delmas, C .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2000, 147 (04) :1314-1321
[7]   THERMAL-STABILITY OF LIXCOO2, LIXNIO2 AND LAMBDA-MNO2 AND CONSEQUENCES FOR THE SAFETY OF LI-ION CELLS [J].
DAHN, JR ;
FULLER, EW ;
OBROVAC, M ;
VONSACKEN, U .
SOLID STATE IONICS, 1994, 69 (3-4) :265-270
[8]   RECHARGEABLE LINIO2 CARBON CELLS [J].
DAHN, JR ;
VONSACKEN, U ;
JUZKOW, MW ;
ALJANABY, H .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1991, 138 (08) :2207-2211
[9]   On the behavior of the LixNiO2 system:: an electrochemical and structural overview [J].
Delmas, C ;
Peres, JP ;
Rougier, A ;
Demourgues, A ;
Weill, F ;
Chadwick, A ;
Broussely, M ;
Perton, F ;
Biensan, P ;
Willmann, P .
JOURNAL OF POWER SOURCES, 1997, 68 (01) :120-125
[10]  
DELMAS C, 1998, P 9 INT M LITH BATT, P38