Attentional modulation of learning-related repetition attenuation effects in human parahippocampal cortex

被引:129
作者
Yi, DJ [1 ]
Chun, MM [1 ]
机构
[1] Yale Univ, Dept Psychol, New Haven, CT 06520 USA
关键词
attention; perceptual learning; memory; repetition attenuation; fMRI; parahippocampal cortex;
D O I
10.1523/JNEUROSCI.4677-04.2005
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Two of the most fundamental processes in biological vision are attention and learning. Attention actively selects and enhances visual information that is most relevant to behavior. Learning enables the visual system to benefit from perceptual experience. The amount of visual information to learn is infinite; however, top-down control mechanisms must somehow regulate learning to achieve an adaptive balance between plasticity and stability in neural circuitry. Functional magnetic resonance imaging (fMRI) can measure learning-related changes in neural activity to previously viewed perceptual stimuli. Described variably as the repetition suppression or adaptation effect, the attenuation in neural activity to repeated stimuli versus novel stimuli provides a marker for stimuli-specific perceptual processing and memory. One important issue concerns whether repetition attenuation is automatic or not, and recent work has begun to show that it is sensitive to task demands. Accordingly, the present study further examined how attention controls the attenuated response to repeated stimuli, specifically testing whether attention is important for initial encoding, for the expression of memory traces, or for both encoding and expression. To manipulate attention, we used overlapping scene and face images and asked subjects to attend to either category. fMRI revealed significant attenuation in the parahippocampal place area for only the repeated scenes that were attended both during the initial presentation and during repetition. Thus, attention actively governs when neuronal activity is attenuated to repeated perceptual input, and such attention is important during both initial encoding and subsequent expression of the learned information.
引用
收藏
页码:3593 / 3600
页数:8
相关论文
共 49 条
[1]   Contrast sensitivity in human visual areas and its relationship to object recognition [J].
Avidan, G ;
Harel, M ;
Hendler, T ;
Ben-Bashat, D ;
Zohary, E ;
Malach, R .
JOURNAL OF NEUROPHYSIOLOGY, 2002, 87 (06) :3102-3116
[2]  
BAYLIS GC, 1987, EXP BRAIN RES, V65, P614
[3]   Making memories: Brain activity that predicts how well visual experience will be remembered [J].
Brewer, JB ;
Zhao, Z ;
Desmond, JE ;
Glover, GH ;
Gabrieli, JDE .
SCIENCE, 1998, 281 (5380) :1185-1187
[4]   NEURONAL EVIDENCE THAT INFEROMEDIAL TEMPORAL CORTEX IS MORE IMPORTANT THAN HIPPOCAMPUS IN CERTAIN PROCESSES UNDERLYING RECOGNITION MEMORY [J].
BROWN, MW ;
WILSON, FAW ;
RICHES, IP .
BRAIN RESEARCH, 1987, 409 (01) :158-162
[5]  
BUCKNER RL, 1995, J NEUROSCI, V15, P12
[6]   Functional-anatomic correlates of object priming in humans revealed by rapid presentation event-related fMRI [J].
Buckner, RL ;
Goodman, J ;
Burock, M ;
Rotte, M ;
Koutstaal, W ;
Schacter, D ;
Rosen, B ;
Dale, AM .
NEURON, 1998, 20 (02) :285-296
[7]   Neural Mechanisms of Selective Visual Attention [J].
Moore, Tirin ;
Zirnsak, Marc .
ANNUAL REVIEW OF PSYCHOLOGY, VOL 68, 2017, 68 :47-72
[9]   Cortical activity reductions during repetition priming can result from rapid response learning [J].
Dobbins, IG ;
Schnyer, DM ;
Verfaellie, M ;
Schacter, DL .
NATURE, 2004, 428 (6980) :316-319
[10]   How the brain learns to see objects and faces in an impoverished context [J].
Dolan, RJ ;
Fink, GR ;
Rolls, E ;
Booth, M ;
Holmes, A ;
Frackowiak, RSJ ;
Friston, KJ .
NATURE, 1997, 389 (6651) :596-599