Comparison and evaluation of gene therapy and epigenetic approaches for wound healing

被引:15
作者
Cutroneo, KR [1 ]
Chiu, JF [1 ]
机构
[1] Univ Vermont, Dept Biochem, Burlington, VT 05405 USA
关键词
D O I
10.1046/j.1524-475x.2000.00494.x
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
During the past decade considerable evidence has mounted concerning the importance of growth factors in the wound healing process both for cell replication and for stimulating reparative cells to synthesize and secrete extracellular matrix components. During normal wound healing the growth factor concentration has to be maintained at a certain level. If the growth factor concentration is too low, normal healing fails to occur. Whereas if the growth factor concentration is too high due to either over-expression of the growth factor or too much growth factor being applied to the wound, aberrant wound healing will occur. One approach for controlling the amount of growth factor at the wound site during normal healing is through gene therapy and the titration of gene dosage. However if a narrow window exists between the beneficial therapeutic effect and toxic effects with increasing gene dosage, an agent may be necessary to give in combination with gene therapy to regulate the over-expression of growth factor. In addition to genetic approaches to regulate wound healing, epigenetic approaches also exist. Antisense oligodeoxynucleotides have been shown to regulate wound repair in certain model systems and to determine the protein(s) necessary for normal wound healing. A novel approach to regulate the activity of collagen genes, thereby affecting fibrosis, is to use a sense oligodeoxynucleotide having the same sequence of the cis element which regulates the promoter activity of a particular collagen gene. This exogenous oligodeoxynucleotide will compete with the cis element in the collagen gene for the trans-acting factor which regulates promoter activity. These epigenetic approaches afford the opportunity to regulate over-expression of growth factor and therefore preclude the potential toxic effects of gene therapy. Both genetic and epigenetic approaches for regulating the wound healing process, either normal or aberrant wound healing, have certain advantages and disadvantages which are discussed in the present article.
引用
收藏
页码:494 / 502
页数:9
相关论文
共 53 条
[1]   Antisense oligonucleotides as therapeutic agents [J].
Alama, A ;
Barbieri, F ;
Cagnoli, M ;
Schettini, G .
PHARMACOLOGICAL RESEARCH, 1997, 36 (03) :171-178
[2]   INHIBITION OF VASCULAR SMOOTH-MUSCLE CELL-PROLIFERATION IN-VITRO AND IN-VIVO BY C-MYC ANTISENSE OLIGODEOXYNUCLEOTIDES [J].
BENNETT, MR ;
ANGLIN, S ;
MCEWAN, JR ;
JAGOE, R ;
NEWBY, AC ;
EVAN, GI .
JOURNAL OF CLINICAL INVESTIGATION, 1994, 93 (02) :820-828
[3]   Gene-enhanced tissue engineering: Applications for bone healing using cultured periosteal cells transduced retrovirally with the BMP-7 gene [J].
Breitbart, AS ;
Grande, DA ;
Mason, JM ;
Barcia, M ;
James, T ;
Grant, RT .
ANNALS OF PLASTIC SURGERY, 1999, 42 (05) :488-495
[4]   Inhibitory role of plasminogen activator inhibitor-1 in arterial wound healing and neointima formation - A gene targeting and gene transfer study in mice [J].
Carmeliet, P ;
Moons, L ;
Lijnen, HR ;
Janssens, S ;
Lupu, F ;
Collen, D ;
Gerard, RD .
CIRCULATION, 1997, 96 (09) :3180-3191
[5]   Selective changes in protein kinase C (PKC) isoform expression in rabbit corneal epithelium during wound healing.: Inhibition of corneal epithelial repair by PKCα antisense [J].
Chandrasekher, G ;
Bazan, NG ;
Bazan, HEP .
EXPERIMENTAL EYE RESEARCH, 1998, 67 (05) :603-610
[6]   INVIVO PROMOTER ACTIVITY AND TRANSGENE EXPRESSION IN MAMMALIAN SOMATIC TISSUES EVALUATED BY USING PARTICLE BOMBARDMENT [J].
CHENG, L ;
ZIEGELHOFFER, PR ;
YANG, NS .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (10) :4455-4459
[7]   Control of scarring in adult wounds using antisense transforming growth factor-beta 1 oligodeoxynucleotides [J].
Choi, BM ;
Kwak, HJ ;
Jun, CD ;
Park, SD ;
Kim, KY ;
Kim, HR ;
Chung, HT .
IMMUNOLOGY AND CELL BIOLOGY, 1996, 74 (02) :144-150
[8]   A sense phosphorothioate oligodeoxynucleotide containing the transforming growth factor beta regulatory element acts as a novel local nonsteroidal antifibrotic drug [J].
Cutroneo, KR ;
Chiu, JF .
WOUND REPAIR AND REGENERATION, 2000, 8 (05) :399-404
[9]   INHIBITION OF PROTEIN-KINASE C-ALPHA EXPRESSION IN MICE AFTER SYSTEMIC ADMINISTRATION OF PHOSPHOROTHIOATE ANTISENSE OLIGODEOXYNUCLEOTIDES [J].
DEAN, NM ;
MCKAY, R .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (24) :11762-11766
[10]  
DiPietro LA, 1996, AM J PATHOL, V148, P1851