The regulation of body weight: lessons from the seasonal animal

被引:47
作者
Morgan, PJ [1 ]
Mercer, JG [1 ]
机构
[1] Aberdeen Ctr Energy Regulat & Obes, Rowett Res Inst, Aberdeen AB21 9SB, Scotland
关键词
energy balance; melatonin; hypothalamus; gene expression;
D O I
10.1079/PNS200060
中图分类号
R15 [营养卫生、食品卫生]; TS201 [基础科学];
学科分类号
100403 ;
摘要
The hypothalamus is a major regulatory centre involved in the control of many important physiological axes. One of these axes is the regulation of ingestive behaviour. Recent work using a combination of genetic-mutant mouse models together with targeted gene deletions has contributed much to our understanding of how neural pathways of the hypothalamus are involved in the regulation of energy balance in animals. These pathways are also relevant to human energy homeostasis, as mutations in key genes are correlated with obesity. Many of the genes identified mediate the effects of leptin, and are therefore primarily involved in sensing and responding to peripheral signals. In seasonal animals, such as the Siberian hamster (Phodopus sungorus), there is evidence for a higher level of regulation. The systems involved regulate body weight around an apparent 'set-point' through the action of photoperiod via the neurohormone, melatonin. The ability to manipulate energy balance through photoperiod (and melatonin) in the seasonal-animal model offers novel opportunities to identify further fundamental aspects of the control mechanisms involved in the central control of energy homeostasis and body weight.
引用
收藏
页码:127 / 134
页数:8
相关论文
共 57 条
[1]  
Boss-Williams Katherine A., 1996, Physiology and Behavior, V59, P157, DOI 10.1016/0031-9384(95)02037-3
[2]   The neuropeptide Y agouti gene-related protein (AGRP) brain circuitry in normal, anorectic, and monosodium glutamate-treated mice [J].
Broberger, C ;
Johansen, J ;
Johansson, C ;
Schalling, M ;
Hökfelt, T .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (25) :15043-15048
[3]   Narcolepsy in orexin knockout mice:: Molecular genetics of sleep regulation [J].
Chemelli, RM ;
Willie, JT ;
Sinton, CM ;
Elmquist, JK ;
Scammell, T ;
Lee, C ;
Richardson, JA ;
Williams, SC ;
Xiong, YM ;
Kisanuki, Y ;
Fitch, TE ;
Nakazato, M ;
Hammer, RE ;
Saper, CB ;
Yanagisawa, M .
CELL, 1999, 98 (04) :437-451
[4]   Evidence that the diabetes gene encodes the leptin receptor: Identification of a mutation in the leptin receptor gene in db/db mice [J].
Chen, H ;
Charlat, O ;
Tartaglia, LA ;
Woolf, EA ;
Weng, X ;
Ellis, SJ ;
Lakey, ND ;
Culpepper, J ;
Moore, KJ ;
Breitbart, RE ;
Duyk, GM ;
Tepper, RI ;
Morgenstern, JP .
CELL, 1996, 84 (03) :491-495
[5]   Proopiomelanocortin neurons are direct targets for leptin in the hypothalamus [J].
Cheung, CC ;
Clifton, DK ;
Steiner, RA .
ENDOCRINOLOGY, 1997, 138 (10) :4489-4492
[6]  
Cone RD, 1996, RECENT PROG HORM RES, V51, P287
[7]  
CONE RD, 1996, RECENT PROG HORM RES, V51, P318
[8]   Integration of NPY, AGRP, and melanocortin signals in the hypothalamic paraventricular nucleus: Evidence of a cellular basis for the adipostat [J].
Cowley, MA ;
Pronchuk, N ;
Fan, W ;
Dinulescu, DM ;
Colmers, WF ;
Cone, RD .
NEURON, 1999, 24 (01) :155-163
[9]   The hypocretins: Hypothalamus-specific peptides with neuroexcitatory activity [J].
De Lecea, L ;
Kilduff, TS ;
Peyron, C ;
Gao, XB ;
Foye, PE ;
Danielson, PE ;
Fukuhara, C ;
Battenberg, ELF ;
Gautvik, VT ;
Bartlett, FS ;
Frankel, WN ;
van den Pol, AN ;
Bloom, FE ;
Gautvik, KM ;
Sutcliffe, JG .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (01) :322-327
[10]   Seasonal neuroendocrine rhythms in the male Siberian hamster persist after monosodium glutamate-induced lesions of the arcuate nucleus in the neonatal period [J].
Ebling, FJP ;
Arthurs, OJ ;
Turney, BW ;
Cronin, AS .
JOURNAL OF NEUROENDOCRINOLOGY, 1998, 10 (09) :701-712