Justification of the nonlinear Kirchhoff-Love theory of plates as the application of a new Singular Inverse Method

被引:22
作者
Monneau, R [1 ]
机构
[1] Ecole Natl Ponts & Chaussees, F-77455 Marne La Vallee 2, France
关键词
D O I
10.1007/s00205-003-0267-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the framework of isotropic homogeneous nonlinear elasticity for a St. Venant-Kirchhoff material, we consider a three-dimensional plate of thickness epsilon and periodic in the two other directions. Using a new method that we call the Singular Inverse Method, we prove the existence of a solution rescaled uniformly in epsilon for small forces, and at the same time, we prove the rigorous convergence of this rescaled solution to the solution of the nonlinear Kirchhoff-Love plate model. We also state a 3d-2d error estimate.
引用
收藏
页码:1 / 34
页数:34
相关论文
共 28 条
[1]  
[Anonymous], ANAL FONCTIONNELLE T
[2]  
[Anonymous], 1997, STUD MATH APPL
[3]  
Anzellotti G., 1994, Asymptotic Analysis, V9, P61
[4]  
BALL JM, 1977, ARCH RATION MECH AN, V63, P337, DOI 10.1007/BF00279992
[5]   Convergence of Meissner minimizers of the Ginzburg-Landau energy of superconductivity as κ→+∞ [J].
Bonnet, A ;
Chapman, SJ ;
Monneau, R .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2000, 31 (06) :1374-1395
[6]   JUSTIFICATION OF A NON-LINEAR MODEL IN PLATE THEORY [J].
CIARLET, PG ;
DESTUYNDER, P .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1979, 17-8 (JAN) :227-258
[7]  
Ciarlet PG., 1990, PLATES JUNCTIONS ELA, V14
[8]  
CIARLET PG, 1998, MATH ELASTICITY, V1
[9]   A JUSTIFICATION OF NONLINEAR PROPERLY INVARIANT PLATE THEORIES [J].
FOX, DD ;
RAOULT, A ;
SIMO, JC .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1993, 124 (02) :157-199
[10]   The Foppl-von Karman plate theory as a low energy Γ-limit of nonlinear elasticity [J].
Friesecke, G ;
James, RD ;
Müller, S .
COMPTES RENDUS MATHEMATIQUE, 2002, 335 (02) :201-206