Controlling Hopf bifurcation and chaos in a small power system

被引:58
作者
Harb, AM
Abdel-Jabbar, N
机构
[1] Jordan Univ Sci & Technol, Dept Elect Engn, Irbid, Jordan
[2] Jordan Univ Sci & Technol, Dept Chem Engn, Irbid, Jordan
关键词
D O I
10.1016/S0960-0779(03)00073-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For the power systems, the stabilization and tracking of voltage collapse trajectory, which involves severe nonlinear and nonstationary (unstable) features, is somewhat difficult to achieve. In this paper, we choose a widely used three-bus power system to be our case study. The study shows that the system experiences a Hopf bifurcation point (subcritical point) leads to chaos throughout period-doubling route. A model-based control strategy based on global state feedback linearization (GLC) is applied to the power system to control the chaotic behavior. The performance of GLC is compared with that for a nonlinear state feedback control. (C) 2003 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:1055 / 1063
页数:9
相关论文
共 21 条
[1]   LOCAL FEEDBACK STABILIZATION AND BIFURCATION CONTROL .1. HOPF-BIFURCATION [J].
ABED, EH ;
FU, JH .
SYSTEMS & CONTROL LETTERS, 1986, 7 (01) :11-17
[2]   LOCAL FEEDBACK STABILIZATION AND BIFURCATION CONTROL .2. STATIONARY BIFURCATION [J].
ABED, EH ;
FU, JH .
SYSTEMS & CONTROL LETTERS, 1987, 8 (05) :467-473
[3]   NONLINEAR OSCILLATIONS IN POWER-SYSTEMS [J].
ABED, EH ;
VARAIYA, PP .
INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 1984, 6 (01) :37-43
[4]  
ABED EH, 1992, P 1992 IEEE INT S CI
[5]   CHAOTIC MOTION IN NON-LINEAR FEEDBACK-SYSTEMS [J].
BAILLIEUL, J ;
BROCKETT, RW ;
WASHBURN, RB .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1980, 27 (11) :990-997
[6]   BIFURCATION CHARACTERISTICS OF NONLINEAR-SYSTEMS UNDER CONVENTIONAL PID CONTROL [J].
CHANG, HC ;
CHEN, LH .
CHEMICAL ENGINEERING SCIENCE, 1984, 39 (7-8) :1127-1142
[7]   ON VOLTAGE COLLAPSE IN ELECTRIC-POWER SYSTEMS [J].
CHIANG, HD ;
DOBSON, I ;
THOMAS, RJ ;
THORP, JS ;
FEKIHAHMED, L .
IEEE TRANSACTIONS ON POWER SYSTEMS, 1990, 5 (02) :601-611
[8]  
DOBSON I, 1988, IEEE P 27 C DEC CONT, P2104
[9]  
HARB AM, 1999, ELECT MACH POWER SYS, V28
[10]   INPUT-OUTPUT LINEARIZATION OF GENERAL NONLINEAR PROCESSES [J].
HENSON, MA ;
SEBORG, DE .
AICHE JOURNAL, 1990, 36 (11) :1753-1757