A review of heat-treatment effects on activity and stability of PEM fuel cell catalysts for oxygen reduction reaction

被引:388
作者
Bezerra, Cicero W. B.
Zhang, Lei
Liu, Hansan
Lee, Kunchan
Marques, Aldalea L. B.
Marques, Edmar P.
Wang, Haijiang
Zhang, Jiujun [1 ]
机构
[1] Natl Res Council Canada, Inst Fuel Cell Innovat, Vancouver, BC V6T 1W5, Canada
[2] Univ Fed Maranhao, Dept Chem, BR-65080040 Sao Luis, MA, Brazil
[3] Univ Fed Maranhao, Dept Chem Technol, Sao Luis, MA, Brazil
关键词
proton exchange membrane fuel cells; electrocatalysis; oxygen reduction reaction; heat treatment; Pt catalysts; non-noble catalysts;
D O I
10.1016/j.jpowsour.2007.08.028
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This paper reviews over 120 papers regarding the effect of heat treatment on the catalytic activity and stability of proton exchange membrane (PEM) fuel cell catalysts. These catalysts include primarily unsupported and carbon-supported platinum (Pt), Pt alloys, non-Pt alloys, and transition metal macrocycles. The heat treatment can induce changes in catalyst properties such as particle size, morphology, dispersion of the metal on the support, alloying degree, active site formation, catalytic activity, and catalytic stability. The optimum heat-treatment temperature and time period are strongly dependent on the individual catalyst. With respect to Pt-based catalysts, heat treatment can induce particle-size growth, better alloying degree, and changes in the catalyst surface morphology from amorphous to more ordered states, all of which have a remarkable effect on oxygen reduction reaction (ORR) activity and stability. However, heat treatment of the catalyst carbon supports can also significantly affect the ORR catalytic activity of the supported catalyst. Regarding non-noble catalysts, in particular transition metal macrocycles, heat treatment is also important in ORR activity and stability improvement. In fact, heat treatment is a necessary step for introducing more active catalytic sites. For metal chalcogenide catalysts, it seems that heat treatment may not be necessary for catalytic activity and stability improvement. More research is necessary to improve our fundamental understanding and to develop a new strategy that includes innovative heat-treatment processes for enhancing fuel cell catalyst activity and stability. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:891 / 908
页数:18
相关论文
共 127 条
[1]   Part I: Dynamic evolution of the particle size distribution in particulate processes undergoing combined particle growth and aggregation [J].
Alexopoulos, AH ;
Roussos, AI ;
Kiparissides, C .
CHEMICAL ENGINEERING SCIENCE, 2004, 59 (24) :5751-5769
[2]  
ALONSOVANTE N, 1988, J CATAL, V112, P384
[3]  
ALONSOVANTE N, 2003, HDB FUEL CELLS FUNDA, V2, P534
[4]   ORIGIN OF THE ELECTROCATALYTIC PROPERTIES FOR O2 REDUCTION OF SOME HEAT-TREATED POLYACRYLONITRILE AND PHTHALOCYANINE COBALT COMPOUNDS ADSORBED ON CARBON-BLACK AS PROBED BY ELECTROCHEMISTRY AND X-RAY ABSORPTION-SPECTROSCOPY [J].
ALVES, MCM ;
DODELET, JP ;
GUAY, D ;
LADOUCEUR, M ;
TOURILLON, G .
JOURNAL OF PHYSICAL CHEMISTRY, 1992, 96 (26) :10898-10905
[5]   Formation of carbon-supported PtM alloys for low temperature fuel cells: a review [J].
Antolini, E .
MATERIALS CHEMISTRY AND PHYSICS, 2003, 78 (03) :563-573
[6]   Effects of geometric and electronic factors on ORR activity of carbon supported Pt-Co electrocatalysts in PEM fuel cells [J].
Antolini, E ;
Salgado, JRC ;
Giz, MJ ;
Gonzalez, ER .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2005, 30 (11) :1213-1220
[7]   Formation, microstructural characteristics and stability of carbon supported platinum catalysts for low temperature fuel cells [J].
Antolini, E .
JOURNAL OF MATERIALS SCIENCE, 2003, 38 (14) :2995-3005
[8]   Electrocatalysis of oxygen reduction on a carbon supported platinum-vanadium alloy in polymer electrolyte fuel cells [J].
Antolini, E ;
Passos, RR ;
Ticianelli, EA .
ELECTROCHIMICA ACTA, 2002, 48 (03) :263-270
[9]   Study on the formation of Pt/C catalysts by non-oxidized active carbon support and a sulfur-based reducing agent [J].
Antolini, E ;
Cardellini, F ;
Giacometti, E ;
Squadrito, G .
JOURNAL OF MATERIALS SCIENCE, 2002, 37 (01) :133-139
[10]   The stability of Pt-M (M = first row transition metal) alloy catalysts and its effect on the activity in low temperature fuel cells - A literature review and tests on a Pt-Co catalyst [J].
Antolini, Ermete ;
Salgado, Jose R. C. ;
Gonzalez, Ernesto R. .
JOURNAL OF POWER SOURCES, 2006, 160 (02) :957-968