Modal analysis of random vibrating systems from multi-output data

被引:4
作者
Lardies, J [1 ]
Larbi, N [1 ]
机构
[1] Univ Franche Comte, Dept Appl Mech, LMARC, F-25000 Besancon, France
关键词
random vibrations; modal analysis; state-space model; model order estimation;
D O I
10.1177/107754630100700303
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
A method for modal parameter identification of a random vibrating system from multi-output data only is presented. The method uses a multivariate state-space model and exploits shift properties of a block-Hankel matrix formed from the covariance matrices of output data. Since the number of modes excited is unknown, the model order is not known. Two methods for model order estimation are presented. They are based on tests that have a chi-square distribution. To illustrate the procedure for identifying the order, the parameters and spectrum of a noisy process, from output data only, and a numerical and an experimental mechanical system are studied.
引用
收藏
页码:339 / 363
页数:25
相关论文
共 9 条
[1]  
Anderson T., 1984, INTRO MULTIVARIATE S
[2]  
Aoki Masanao., 2013, STATE SPACE MODELING
[3]   IN-SITU DAMAGE MONITORING IN VIBRATION MECHANICS - DIAGNOSTICS AND PREDICTIVE MAINTENANCE [J].
BASSEVILLE, M ;
BENVENISTE, A ;
GACHDEVAUCHELLE, B ;
GOURSAT, M ;
BONNECASE, D ;
DOREY, P ;
PREVOSTO, M ;
OLAGNON, M .
MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 1993, 7 (05) :401-423
[4]  
HU S, 1989, P 12 BIENN C MECH VI, P259
[5]  
Juang JN, 1994, APPL SYSTEM IDENTIFI
[6]  
KIRKEGAARD PH, 1997, P 15 IMAC ORL FL, P889
[7]   State-space identification of vibrating systems from multi-output measurements [J].
Lardies, J .
MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 1998, 12 (04) :543-558
[8]  
MAGNUS JR, 1994, MATRIX DIFFERENTIAL
[9]  
OVERSCHEE P. VAN, 1996, SUBSPACE IDENTIFICAT