Target of Rapamycin Regulates Development and Ribosomal RNA Expression through Kinase Domain in Arabidopsis

被引:151
作者
Ren, Maozhi [1 ]
Qiu, Shuqing [1 ]
Venglat, Prakash [1 ]
Xiang, Daoquan [1 ]
Feng, Li [1 ]
Selvaraj, Gopalan [1 ]
Datla, Raju [1 ]
机构
[1] Natl Res Council Canada, Inst Plant Biotechnol, Saskatoon, SK S7N 0W9, Canada
关键词
DROSOPHILA TARGET; HEAT REPEATS; IN-VIVO; TOR; GROWTH; YEAST; MTOR; LOCALIZATION; PROTEINS; RAPTOR;
D O I
10.1104/pp.110.169045
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Target of rapamycin (TOR) is a central regulator of cell growth, cell death, nutrition, starvation, hormone, and stress responses in diverse eukaryotes. However, very little is known about TOR signaling and the associated functional domains in plants. We have taken a genetic approach to dissect TOR functions in Arabidopsis (Arabidopsis thaliana) and report here that the kinase domain is essential for the role of TOR in embryogenesis and 45S rRNA expression. Twelve new T-DNA insertion mutants, spanning 14.2 kb of TOR-encoding genomic region, have been characterized. Nine of these share expression of defective kinase domain and embryo arrest at 16 to 32 cell stage. However, three T-DNA insertion lines affecting FATC domain displayed normal embryo development, indicating that FATC domain was dispensable in Arabidopsis. Genetic complementation showed that the TOR kinase domain alone in tor-10/tor-10 mutant background can rescue early embryo lethality and restore normal development. Overexpression of full-length TOR or kinase domain in Arabidopsis displayed developmental abnormalities in meristem, leaf, root, stem, flowering time, and senescence. We further show that TOR, especially the kinase domain, plays a role in ribosome biogenesis by activating 45S rRNA production. Of the six putative nuclear localization sequences in the kinase domain, nuclear localization sequence 6 was identified to confer TOR nuclear targeting in transient expression assays. Chromatin immunoprecipitation studies revealed that the HEAT repeat domain binds to 45S rRNA promoter and the 5' external transcribed spacer elements motif. Together, these results show that TOR controls the embryogenesis, postembryonic development, and 45S rRNA production through its kinase domain in Arabidopsis.
引用
收藏
页码:1367 / 1382
页数:16
相关论文
共 50 条
[1]   Protein kinase activity and identification of a toxic effector domain of the target of rapamycin TOR proteins in yeast [J].
Alarcon, CM ;
Heitman, J ;
Cardenas, ME .
MOLECULAR BIOLOGY OF THE CELL, 1999, 10 (08) :2531-2546
[2]   The Arabidopsis AtRaptor genes are essential for post-embryonic plant growth [J].
Anderson, GH ;
Veit, B ;
Hanson, MR .
BMC BIOLOGY, 2005, 3 (1)
[3]   HEAT REPEATS IN THE HUNTINGTONS-DISEASE PROTEIN [J].
ANDRADE, MA ;
BORK, P .
NATURE GENETICS, 1995, 11 (02) :115-116
[4]  
[Anonymous], 2005, NAT METHODS
[5]   TOR controls translation initiation and early G1 progression in yeast [J].
Barbet, NC ;
Schneider, U ;
Helliwell, SB ;
Stansfield, I ;
Tuite, MF ;
Hall, MN .
MOLECULAR BIOLOGY OF THE CELL, 1996, 7 (01) :25-42
[6]   The TOR pathway: A target for cancer therapy [J].
Bjornsti, MA ;
Houghton, PJ .
NATURE REVIEWS CANCER, 2004, 4 (05) :335-348
[7]   FAT: a novel domain in PIK-related kinases [J].
Bosotti, R ;
Isacchi, A ;
Sonnhammer, ELL .
TRENDS IN BIOCHEMICAL SCIENCES, 2000, 25 (05) :225-227
[8]   A role for the ribosome in development [J].
Byrne, Mary E. .
TRENDS IN PLANT SCIENCE, 2009, 14 (09) :512-519
[9]   DOMINANT MISSENSE MUTATIONS IN A NOVEL YEAST PROTEIN RELATED TO MAMMALIAN PHOSPHATIDYLINOSITOL 3-KINASE AND VPS34 ABROGATE RAPAMYCIN CYTOTOXICITY [J].
CAFFERKEY, R ;
YOUNG, PR ;
MCLAUGHLIN, MM ;
BERGSMA, DJ ;
KOLTIN, Y ;
SATHE, GM ;
FAUCETTE, L ;
ENG, WK ;
JOHNSON, RK ;
LIVI, GP .
MOLECULAR AND CELLULAR BIOLOGY, 1993, 13 (10) :6012-6023
[10]   Structural Basis for the Association of the Redox-sensitive Target of Rapamycin FATC Domain with Membrane-mimetic Micelles [J].
Dames, Sonja A. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2010, 285 (10) :7766-7775