Tumor targeting using anti-her2 immunoliposomes

被引:261
作者
Park, JW
Kirpotin, DB
Hong, K
Shalaby, R
Shao, Y
Nielsen, UB
Marks, JD
Papahadjopoulos, D
Benz, CC
机构
[1] UCSF, Dept Med, Div Hematol Oncol, San Francisco, CA 94143 USA
[2] Calif Pacific Med Ctr, Inst Res, San Francisco, CA 94115 USA
[3] UCSF, Dept Anesthesia, San Francisco, CA 94143 USA
关键词
liposomes; immunoliposomes; HER2; ErbB2;
D O I
10.1016/S0168-3659(01)00315-7
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We have generated anti-HER2 (ErbB2) immunoliposomes ILs), consisting of long circulating liposomes linked to anti-HER2 monoclonal antibody (MAb) fragments, to provide targeted drug delivery to HER2-overexpressing cells. Immunoliposomes were constructed using a modular strategy in which components were optimized for internalization and intracellular drug delivery. Parameters included choice of antibody construct, antibody density, antibody conjugation procedure, and choice of liposome construct. Anti-HER2 immunoliposomes bound efficiently to and internalized in HER2-overexpressing cells in vitro as determined by fluorescence microscopy, electron microscopy, and quantitative analysis of fluorescent probe delivery. Delivery via ILs in HER2-overexpressing cells yielded drug uptake that was up to 700-fold greater than with non-targeted sterically stabilized liposomes. In vivo, anti-HER2 ILs showed extremely long circulation as stable constructs in normal adult rats after a single i.v. dose, with pharmacokinetics that were indistinguishable from sterically stabilized liposomes. Repeat administrations revealed no increase in clearance, further confirming that ILs retain the long circulation and non-immunogenicity of sterically stabilized liposomes. In five different HER2-overexpressing xenograft models, anti-HER2 ILs loaded with doxorubicin (dox) showed potent anticancer activity, including tumor inhibition, regressions, and cures (pathologic complete responses). ILs were significantly superior vs. all other treatment conditions tested: free dox, liposomal dox, free MAb (trastuzumab), and combinations of dox + MAb or liposomal dox + MAb. For example, ILs produced significantly superior antitumor effects vs. non-targeted liposomes (P values from <0.0001 to 0.04 in eight separate experiments). In a non-HER2-overexpressing xenograft model (MCF7), ILs and non-targeted liposomal dox produced equivalent antitumor effects. Detailed studies of tumor localization indicated a novel mechanism of drug delivery for anti-HER2 ILs. Immunotargeting did not increase tumor tissue levels of ILs vs. liposomes, as both achieved very high tumor localization (7.0-8.5% of injected dose/g tissue) in xenograft tumors. However, histologic studies using colloidal-gold labeled ILs demonstrated efficient intracellular delivery in tumor cells, while non-targeted liposomes accumulated within stroma, either extracellularly or within macrophages. In the MCF7 xenograft model lacking HER2-overexpression, no difference in tumor cell uptake was seen, with both ILs and non-targeted liposomes accumulating within stroma. Thus, anti-HER2 ILs, but not non-targeted liposomes, achieve intracellular drug delivery via receptor-mediated endocytosis, and this mechanism is associated with superior antitumor activity. Based on these results, anti-HER2 immunoliposomes have been developed toward clinical trials. Reenginecring of construct design for clinical use has been achieved, including: new anti-HER2 scFv F5 generated by screening of a phage antibody library for internalizing anti-HER2 phage antibodies; modifications of the scFv expression construct to support large scale production and clinical use; and development of methods for large-scale conjugation of antibody fragments with liposomes. We developed a scalable two-step protocol for linkage of scFv to preformed and drug-loaded liposomes. Our final, optimized anti-HER2 ILs-dox construct consists of F5 conjugated to derivatized PEG-PE linker and incorporated into commercially available liposomal doxorubicin (Doxil (R)). Finally, further studies of the mechanism of action of anti-HER2 ILs-dox suggest that this strategy may provide optimal delivery of anthracycline-based chemotherapy to HER2-overexpressing cancer cells in the clinic, while circumventing the cardiotoxicity associated with trastuzumab + anthracycline. We conclude that anti-HER2 immunoliposomes represent a promising technology for tumor-targeted drug delivery, and that this strategy may also be applicable to other receptor targets and/or using other delivered agents. (C) 2001 Elsevier Science BY All rights reserved.
引用
收藏
页码:95 / 113
页数:19
相关论文
共 54 条
[1]   LIPOSOMES CONTAINING SYNTHETIC LIPID DERIVATIVES OF POLY(ETHYLENE GLYCOL) SHOW PROLONGED CIRCULATION HALF-LIVES INVIVO [J].
ALLEN, TM ;
HANSEN, C ;
MARTIN, F ;
REDEMANN, C ;
YAUYOUNG, A .
BIOCHIMICA ET BIOPHYSICA ACTA, 1991, 1066 (01) :29-36
[2]   Phase II study of weekly intravenous recombinant humanized Anti-p185(HER2) monoclonal antibody in patients with HER2/neu-overexpressing metastatic breast [J].
Baselga, J ;
Tripathy, D ;
Mendelsohn, J ;
Baughman, S ;
Benz, CC ;
Dantis, L ;
Sklarin, NT ;
Seidman, AD ;
Hudis, CA ;
Moore, J ;
Rosen, PP ;
Twaddell, T ;
Henderson, IC ;
Norton, L .
JOURNAL OF CLINICAL ONCOLOGY, 1996, 14 (03) :737-744
[3]  
Baselga J, 1998, CANCER RES, V58, P2825
[4]   ESTROGEN-DEPENDENT, TAMOXIFEN-RESISTANT TUMORIGENIC GROWTH OF MCF-7 CELLS TRANSFECTED WITH HER2/NEU [J].
BENZ, CC ;
SCOTT, GK ;
SARUP, JC ;
JOHNSON, RM ;
TRIPATHY, D ;
CORONADO, E ;
SHEPARD, HM ;
OSBORNE, CK .
BREAST CANCER RESEARCH AND TREATMENT, 1992, 24 (02) :85-95
[5]  
BNEZ CC, 2000, J WOMENS CANC, V2, P33
[6]  
Braun S, 1999, INT J CANCER, V84, P1, DOI 10.1002/(SICI)1097-0215(19990219)84:1<1::AID-IJC1>3.0.CO
[7]  
2-A
[8]   HUMANIZATION OF AN ANTI-P185HER2 ANTIBODY FOR HUMAN CANCER-THERAPY [J].
CARTER, P ;
PRESTA, L ;
GORMAN, CM ;
RIDGWAY, JBB ;
HENNER, D ;
WONG, WLT ;
ROWLAND, AM ;
KOTTS, C ;
CARVER, ME ;
SHEPARD, HM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1992, 89 (10) :4285-4289
[9]   Multinational study of the efficacy and safety of humanized anti-HER2 monoclonal antibody in women who have HER2-overexpressing metastatic breast cancer that has progressed after chemotherapy for metastatic disease [J].
Cobleigh, MA ;
Vogel, CL ;
Tripathy, D ;
Robert, NJ ;
Scholl, S ;
Fehrenbacher, L ;
Wolter, JM ;
Paton, V ;
Shak, S ;
Lieberman, G ;
Slamon, DJ .
JOURNAL OF CLINICAL ONCOLOGY, 1999, 17 (09) :2639-2648
[10]   ENDOCYTOSIS OF LIPOSOMES BY MACROPHAGES - BINDING, ACIDIFICATION AND LEAKAGE OF LIPOSOMES MONITORED BY A NEW FLUORESCENCE ASSAY [J].
DALEKE, DL ;
HONG, KL ;
PAPAHADJOPOULOS, D .
BIOCHIMICA ET BIOPHYSICA ACTA, 1990, 1024 (02) :352-366