Molecular characterization of estuarine bacterial communities that use high- and low-molecular weight fractions of dissolved organic carbon

被引:104
作者
Covert, JS [1 ]
Moran, MA [1 ]
机构
[1] Univ Georgia, Dept Marine Sci, Athens, GA 30602 USA
关键词
dissolved organic carbon (DOC); ultrafiltration; terminal restriction fragment length; polymorphism (T-RFLP) analysis; bacterial community composition; 16S rDNA;
D O I
10.3354/ame025127
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
The composition of bacterial communities growing at the expense of high-molecular weight (HMW; >1000 Da) and low-molecular weight (LMW; <1000 Da) fractions of dissolved organic carbon from a southeastern US estuary was determined by sequencing and terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA gene amplicons in 2 enrichment studies. 16S rDNA sequence analysis indicated that the bacterial communities growing on the LMW fraction were dominated by <gamma>- and epsilon -Proteobacteria related to Pseudomonas fluorescens and Arcobacter nitrofigilis (accounting for 90 % of the clones) while the communities using the HMW fraction were dominated by alpha-, beta-, and gamma -Proteobacteria and Cytophaga-Flexibacter-Bacteroides related to Rhizobium-Agrobacterium, Janthinobacterium lividum, Pseudomonas fluorescens, Marinobacterium georgiense, Pseudoalteromonas, and Sphingobacterium comitans (accounting for 98 % of the clones). Methylotrophic bacteria were present in the inoculum community but not found in either LMW or HMW enrichments. T-RFLP analysis of the enrichment communities showed measurable changes in community composition during the enrichment period, and companion respiration assays confirmed utilization of sufficient HMW and LMW carbon to support several bacterial generations. Although the composition of the estuarine inoculum used for the 2 enrichment studies (conducted in April 1997 and May 1999) was quite similar, the communities developing on the HMW and LMW fractions differed between experiments, potentially reflecting temporal variations in the chemical composition of the dissolved organic carbon.
引用
收藏
页码:127 / 139
页数:13
相关论文
共 40 条
[1]   Bacterial utilization of different size classes of dissolved organic matter [J].
Amon, RMW ;
Benner, R .
LIMNOLOGY AND OCEANOGRAPHY, 1996, 41 (01) :41-51
[2]   RAPID-CYCLING OF HIGH-MOLECULAR-WEIGHT DISSOLVED ORGANIC-MATTER IN THE OCEAN [J].
AMON, RMW ;
BENNER, R .
NATURE, 1994, 369 (6481) :549-552
[3]   ORGANIC AND INORGANIC GEOCHEMISTRY OF SOME COASTAL-PLAIN RIVERS OF SOUTHEASTERN UNITED-STATES [J].
BECK, KC ;
REUTER, JH ;
PERDUE, EM .
GEOCHIMICA ET COSMOCHIMICA ACTA, 1974, 38 (03) :341-364
[4]   Protection of protein from bacterial degradation by submicron particles [J].
Borch, NH ;
Kirchman, DL .
AQUATIC MICROBIAL ECOLOGY, 1999, 16 (03) :265-272
[5]   An intercomparison of cross-flow filtration techniques used for sampling marine colloids: Overview and organic carbon results [J].
Buesseler, KO ;
Bauer, JE ;
Chen, RF ;
Eglinton, TI ;
Gustafsson, O ;
Landing, W ;
Mopper, K ;
Moran, SB ;
Santschi, PH ;
VernonClark, R ;
Wells, ML .
MARINE CHEMISTRY, 1996, 55 (1-2) :1-31
[6]   BACTERIAL UPTAKE OF DISSOLVED FREE AND COMBINED AMINO-ACIDS IN ESTUARINE WATERS [J].
COFFIN, RB .
LIMNOLOGY AND OCEANOGRAPHY, 1989, 34 (03) :531-542
[7]   Community composition of marine bacterioplankton determined by 16S rRNA gene clone libraries and fluorescence in situ hybridization [J].
Cottrell, MT ;
Kirchman, DL .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2000, 66 (12) :5116-5122
[8]  
Crump BC, 1999, APPL ENVIRON MICROB, V65, P3192
[9]   Assessment of microbial diversity in four southwestern United States soils by 16S rRNA gene terminal restriction fragment analysis [J].
Dunbar, J ;
Ticknor, LO ;
Kuske, CR .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2000, 66 (07) :2943-2950
[10]   Phylogenetic specificity and reproducibility and new method for analysis of terminal restriction fragment profiles of 16S rRNA genes from bacterial communities [J].
Dunbar, J ;
Ticknor, LO ;
Kuske, CR .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2001, 67 (01) :190-197