Vps20p and Vta1p interact with Vps4p and function in multivesicular body sorting and endosomal transport in Saccharomyces cerevisiae

被引:72
作者
Yeo, SCL
Xu, LH
Ren, JH
Boulton, VJ
Wagle, MD
Liu, C
Ren, G
Wong, P
Zahn, R
Sasajala, P
Yang, HY
Piper, RC
Munn, AL
机构
[1] Natl Univ Singapore, Inst Mol & Cell Biol, Singapore 117609, Singapore
[2] Natl Univ Singapore, Fac Med, Dept Biochem, Singapore 119260, Singapore
[3] Univ Iowa, Dept Phys & Biophys, Iowa City, IA 52242 USA
[4] Univ Queensland, Inst Mol Biosci, Brisbane, Qld 4072, Australia
关键词
AAA-ATPase; endocytosis; endosome; lysosome; LYST/beige; Chediak-Higashi syndrome;
D O I
10.1242/jcs.00751
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Vps4p (End13p) is an AAA-family ATPase that functions in membrane transport through endosomes, sorting of soluble vacuolar proteins to the vacuole, and multivesicular body (MVB) sorting of membrane proteins to the vacuole lumen. In a yeast two-hybrid screen with Vps4p as bait we isolated VPS20 (YMR077c) and the novel open reading frame YLA181c, for which the name VTA1 has recently been assigned (Saccharomyces Genome Database). Vps4p directly binds Vps20p and Vta1p in vitro and binding is not dependent on ATP-conversely, Vps4p binding to Vps20p is partially sensitive to ATP hydrolysis. Both ATP binding [Vps4p-(K179A)] and ATP hydrolysis [Vps4p-(E233Q)] mutant proteins exhibit enhanced binding to Vps20p and Vta1p in vitro. The Vps4p-Vps20p interaction involves the coiled-coil domain of each protein, whereas the Vps4p-Vta1p interaction involves the (non-coiled-coil) C-terminus of each protein. Deletion of either VPS20 (vps20Delta) or VTA1 (vta1Delta) leads to similar class E Vps(-) phenotypes resembling those of vps4Delta, including carboxypeptidase Y (CPY) secretion, a block in ubiquitin-dependent MVB sorting, and a delay in both post-internalisation endocytic transport and biosynthetic transport to the vacuole. The vacuole resident membrane protein Sna3p (whose MVB sorting is ubiquitin-independent) does not appear to exit the class E compartment or reach the vacuole in cells lacking Vps20p, Vta1p or Vps4p, in contrast to other proteins whose delivery to the vacuole is only delayed. We propose that Vps20p and Vta1p regulate Vps4p function in vivo.
引用
收藏
页码:3957 / 3970
页数:14
相关论文
共 49 条
[1]  
Adams A., 1997, METHODS YEAST GENETI
[2]   The Doa4 deubiquitinating enzyme is functionally linked to the vacuolar protein-sorting and endocytic pathways [J].
Amerik, AY ;
Nowak, J ;
Swaminathan, S ;
Hochstrasser, M .
MOLECULAR BIOLOGY OF THE CELL, 2000, 11 (10) :3365-3380
[3]   A role for Saccharomyces cerevisiae fatty acid activation protein 4 in regulating protein N-myristoylation during entry into stationary phase [J].
Ashrafi, K ;
Farazi, TA ;
Gordon, JI .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (40) :25864-25874
[4]   The Vps4p AAA ATPase regulates membrane association of a Vps protein complex required for normal endosome function [J].
Babst, M ;
Wendland, B ;
Estepa, EJ ;
Emr, SD .
EMBO JOURNAL, 1998, 17 (11) :2982-2993
[5]   ESCRT-III: An endosome-associated heterooligomeric protein complex required for MVB sorting [J].
Babst, M ;
Katzmann, DJ ;
Estepa-Sabal, EJ ;
Meerloo, T ;
Emr, SD .
DEVELOPMENTAL CELL, 2002, 3 (02) :271-282
[6]   Endosomal transport function in yeast requires a novel AAA-type ATPase, Vps4p [J].
Babst, M ;
Sato, TK ;
Banta, LM ;
Emr, SD .
EMBO JOURNAL, 1997, 16 (08) :1820-1831
[7]   The Vps27p-Hse1p complex binds ubiquitin and mediates endosomal protein sorting [J].
Bilodeau, PS ;
Urbanowski, JL ;
Winistorfer, SC ;
Piper, RC .
NATURE CELL BIOLOGY, 2002, 4 (07) :534-539
[8]   ATPase-defective mammalian VPS4 localizes to aberrant endosomes and impairs cholesterol trafficking [J].
Bishop, N ;
Woodmane, P .
MOLECULAR BIOLOGY OF THE CELL, 2000, 11 (01) :227-239
[9]   Vacuole biogenesis in Saccharomyces cerevisiae:: Protein transport pathways to the yeast vacuole [J].
Bryant, NJ ;
Stevens, TH .
MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, 1998, 62 (01) :230-+
[10]   Defining a pathway of communication from the C-terminal peptide binding domain to the N-terminal ATPase domain in a AAA protein [J].
Cashikar, AG ;
Schirmer, EC ;
Hattendorf, DA ;
Glover, R ;
Ramakrishnan, MS ;
Ware, DM ;
Lindquist, SL .
MOLECULAR CELL, 2002, 9 (04) :751-760