Tropospheric aerosol observations in Sao Paulo, Brazil using a compact lidar system

被引:17
作者
Landulfo, E
Papayannis, A
De Freitas, AZ
Vieira, ND
Souza, RF
Gonçalves, A
Castanho, ADA
Artaxo, P
Sánchez-Ccoyllo, OR
Moreira, DS
Jorge, MPMP
机构
[1] IPEN CNEN SP, Ctr Lasers & Aplicacoes, BR-05508900 Sao Paulo, Brazil
[2] Natl Tech Univ Athens, Zografos 15780, Greece
[3] Univ Sao Paulo, Inst Fis, BR-05508901 Sao Paulo, Brazil
[4] Univ Sao Paulo, Inst Astron Geofis & Ciencias Atmosfer, Dept Ciencias Atmosfer, BR-05508900 Sao Paulo, Brazil
[5] Inst Nacl Pesquisas Espaciais, Ctr Previsao Tempo & Estudos Climat, Lab Associado Meteorol & Oceanog, BR-12201970 Sao Jose Dos Campos, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
D O I
10.1080/01431160500033971
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
A backscattering light detection and ranging (lidar) system, the first of this kind in the country, has been set up in a suburban area in the city of Sao Paulo, Brazil (23 degrees 33 ' S, 46 degrees 44 ' W) to provide the vertical profile of the aerosol backscatter and extinction coefficients at 532 nm and up to 4-5 km height above sea level (asl). The measurements have been carried out during the second half of the so-called Brazilian dry season, September and October in the year of 2001. When possible, the lidar measurements were complemented with aerosol optical thickness measurements obtained by a CIMEL Sun-tracking photometer in the visible spectral region, not only to validate the lidar data, but also to provide an input value of the so-called extinction-to-backscatter ratio (lidar ratio). The lidar data were also used to retrieve the Planetary Boundary Layer (PBL) height and low troposphere structural features over the city of Sao Paulo. Three-dimensional air mass back trajectory analysis was also conducted to determine the source regions of aerosols observed during this study. These first lidar measurements over the city of Sao Paulo during the second half of the dry season showed a significant variability of the aerosol optical thickness (AOT) in the lower troposphere (0.55 km) at 532 nm. It was also found that the aerosol load is maximized in the 1-3 km height region and this load represents about 20-25% of the lower tropospheric aerosol.
引用
收藏
页码:2797 / 2816
页数:20
相关论文
共 52 条
[1]  
Ackermann J, 1998, J ATMOS OCEAN TECH, V15, P1043, DOI 10.1175/1520-0426(1998)015<1043:TETBRO>2.0.CO
[2]  
2
[3]   Sao Paulo aerosol characterization study [J].
Alonso, CD ;
Martins, MHRB ;
Romano, J ;
Godinho, R .
JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION, 1997, 47 (12) :1297-1300
[4]   In situ measurement of the aerosol extinction-to-backscatter ratio at a polluted continental site [J].
Anderson, TL ;
Masonis, SJ ;
Covert, DS ;
Charlson, RJ ;
Rood, MJ .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2000, 105 (D22) :26907-26915
[5]   THE PARAMETERS OF ATMOSPHERIC TURBIDITY [J].
ANGSTROM, A .
TELLUS, 1964, 16 (01) :64-75
[6]  
[Anonymous], 1963, AIR CHEM RADIOACTIVI, DOI DOI 10.1002/QJ.49709038422
[7]   INDEPENDENT MEASUREMENT OF EXTINCTION AND BACKSCATTER PROFILES IN CIRRUS CLOUDS BY USING A COMBINED RAMAN ELASTIC-BACKSCATTER LIDAR [J].
ANSMANN, A ;
WANDINGER, U ;
RIEBESELL, M ;
WEITKAMP, C ;
MICHAELIS, W .
APPLIED OPTICS, 1992, 31 (33) :7113-7131
[8]   Tropospheric LIDAR aerosol measurements and sun photometric observations at Thessaloniki, Greece [J].
Balis, D ;
Papayannis, A ;
Galani, E ;
Marenco, F ;
Santacesaria, V ;
Hamonou, E ;
Chazette, P ;
Ziomas, I ;
Zerefos, C .
ATMOSPHERIC ENVIRONMENT, 2000, 34 (06) :925-932
[9]  
BISSONNETTE L, 2002, 21 LID REM SENS ATM
[10]  
Boesenberg J., 2001, ADV LASER REMOTE SEN, P155