Tree-valued Markov chains derived from Galton-Watson processes

被引:71
作者
Aldous, D [1 ]
Pitman, J [1 ]
机构
[1] Univ Calif Berkeley, Dept Stat, Berkeley, CA 94720 USA
来源
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES | 1998年 / 34卷 / 05期
关键词
Borel distribution; branching process; conditioning; Galton-Watson process; generalized Poisson distribution; h-transform; pruning; random tree; size-biasing; spinal decomposition; thinning;
D O I
10.1016/S0246-0203(98)80003-4
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let G be a Galton-Watson tree, and for 0 less than or equal to u less than or equal to 1 let G(u) be the subtree of G obtained by retaining each edge with probability u. We study the tree-valued Markov process (G(u), 0 less than or equal to u less than or equal to 1) and an analogous process (G(u)*, 0 less than or equal to u less than or equal to 1) in which G(1)* is a critical or subcritical Galton-Watson tree conditioned to be infinite. Results simplify and are further developed in the special case of Poisson offspring distribution. (C) Elsevier, Paris.
引用
收藏
页码:637 / 686
页数:50
相关论文
共 50 条
[1]  
Aldous D, 1998, DIMACS SER DISCRET M, V41, P1
[2]   THE CONTINUUM RANDOM TREE .1. [J].
ALDOUS, D .
ANNALS OF PROBABILITY, 1991, 19 (01) :1-28
[3]  
Aldous D., 1990, RANDOM STRUCT ALGOR, DOI [10.1002/rsa.3240010402, DOI 10.1002/RSA.3240010402]
[4]  
Aldous D., 1991, Ann. Appl. Probab., V1, P228, DOI DOI 10.1214/AOAP/1177005936
[6]  
ALDOUS DJ, 1997, IN PRESS BERNOULLI
[7]  
ALON N, 1992, PROBABILISTIC METHOD
[8]  
Athreya K.B., 1972, BRANCHING PROCESS
[9]   RANDOM MAPPINGS WITH AN ATTRACTING CENTER - LAGRANGIAN DISTRIBUTIONS AND A REGRESSION FUNCTION [J].
BERG, S ;
MUTAFCHIEV, L .
JOURNAL OF APPLIED PROBABILITY, 1990, 27 (03) :622-636
[10]  
BERG S, 1992, RANDOM GRAPHS, V2, P1