Multiclass linear dimension reduction by weighted pairwise Fisher criteria

被引:357
作者
Loog, M
Duin, RPW
Haeb-Umbach, R
机构
[1] Univ Utrecht, Med Ctr, Image Sci Inst, NL-3508 GA Utrecht, Netherlands
[2] Delft Univ Technol, Dept Appl Phys, Pattern Recognit Grp, NL-2600 GA Delft, Netherlands
[3] Philips Res Labs, D-52066 Aachen, Germany
关键词
linear dimension reduction; Fisher criterion; linear discriminant analysis; Bayes error; approximate pairwise accuracy criterion;
D O I
10.1109/34.935849
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We derive a class of computationally inexpensive linear dimension reduction criteria by introducing a weighted variant of the well-known It-class Fisher criterion associated with linear discriminant analysis (LDA). It can be seen that LDA weights contributions of individual class pairs according to the Euclidian distance of the respective class means. We generalize upon LDA by introducing a different weighting function.
引用
收藏
页码:762 / 766
页数:5
相关论文
共 14 条
  • [1] [Anonymous], 1999, APPROXIMATE PAIRWISE
  • [2] [Anonymous], [No title captured], DOI DOI 10.1111/J.1467-842X.1984.TB01271.X
  • [3] TOWARD BAYES-OPTIMAL LINEAR DIMENSION REDUCTION
    BUTUROVIC, LJ
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1994, 16 (04) : 420 - 424
  • [4] Decell H. P. Jr., 1977, Computers & Mathematics with Applications, V3, P71, DOI 10.1016/0898-1221(77)90116-X
  • [5] DUIN RPW, 2000, P INTL C PAT REC
  • [6] The statistical utilization of multiple measurements
    Fisher, RA
    [J]. ANNALS OF EUGENICS, 1938, 8 : 376 - 386
  • [7] Fukunaga K., 1990, INTRO STAT PATTERN R
  • [8] Hastie T, 1996, J ROY STAT SOC B, V58, P155
  • [9] KITTLER J, 1986, HDB PATTHERN RECOGNI
  • [10] Heteroscedastic discriminant analysis and reduced rank HMMs for improved speech recognition
    Kumar, N
    Andreou, AG
    [J]. SPEECH COMMUNICATION, 1998, 26 (04) : 283 - 297