Impact of Src homology 2-containing inositol 5′-phosphatase 2 gene polymorphisms detected in a Japanese population on insulin signaling

被引:46
作者
Kagawa, S
Sasaoka, T
Yaguchi, S
Ishihara, H
Tsuneki, H
Murakami, S
Fukui, K
Wada, T
Kobayashi, S
Kimura, I
Kobayashi, M
机构
[1] Toyama Med & Pharmaceut Univ, Dept Clin Pharmacol, Toyama 9300194, Japan
[2] Toyama Med & Pharmaceut Univ, Dept Internal Med 1, Toyama 9300194, Japan
[3] Sainou Hosp, Toyama 9300887, Japan
关键词
D O I
10.1210/jc.2004-1724
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Src homology 2-containing 5'-inositol phosphatase 2 (SHIP2) is known to be one of lipid phosphatases converting PI(3,4,5) P-3 to PI(3,4) P-2 in the negative regulation of insulin signaling with the fundamental impact on the state of insulin resistance. To clarify the possible involvement of SHIP2 in the pathogenesis of human type 2 diabetes, we examined the relation of human SHIP2 gene polymorphisms to type 2 diabetes in a Japanese population. We identified 10 polymorphisms including four missense mutations. Among them, single nucleotide polymorphism ( SNP) 3 (L632I) was located in the 5'-phosphatase catalytic region, and SNP5 (N982S) was adjacent to the phosphotyrosine binding domain binding consensus motif in the C terminus. SNP3 was found more frequently in control subjects than in type 2 diabetic patients, suggesting that this mutation might protect from insulin resistance. Transfection study showed that expression of SNP3-SHIP2 inhibited insulin-induced PI( 3,4,5) P-3 production and Akt2 phosphorylation less potently than expression of wild-type SHIP2 in CHO-IR cells. Insulin-induced tyrosine phosphorylation of SNP5-SHIP2 was decreased compared with that of wild-type SHIP2, resulting in increased Shc/Grb2 association and MAPK activation. These results indicate that the polymorphisms of SHIP2 are implicated, at least in part, in type 2 diabetes, possibly by affecting the metabolic and/or mitogenic insulin signaling in the Japanese population.
引用
收藏
页码:2911 / 2919
页数:9
相关论文
共 41 条
[1]  
Alberti KGMM, 1998, DIABETIC MED, V15, P539, DOI 10.1002/(SICI)1096-9136(199807)15:7<539::AID-DIA668>3.0.CO
[2]  
2-S
[3]  
Antonarakis SE, 1998, HUM MUTAT, V11, P1
[4]   Vascular smooth muscle cell growth and insulin regulation of mitogen-activated protein kinase in hypertension [J].
Begum, N ;
Song, Y ;
Rienzie, J ;
Ragolia, L .
AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY, 1998, 275 (01) :C42-C49
[5]   Akt1/PKBα is required for normal growth but dispensable for maintenance of glucose homeostasis in mice [J].
Cho, H ;
Thorvaldsen, JL ;
Chu, QW ;
Feng, F ;
Birnbaum, MJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (42) :38349-38352
[6]   Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKBβ) [J].
Cho, H ;
Mu, J ;
Kim, JK ;
Thorvaldsen, JL ;
Chu, QW ;
Crenshaw, EB ;
Kaestner, KH ;
Bartolomei, MS ;
Shulman, GI ;
Birnbaum, MJ .
SCIENCE, 2001, 292 (5522) :1728-1731
[7]   The lipid phosphatase SHIP2 controls insulin sensitivity [J].
Clément, S ;
Krause, U ;
Desmedt, F ;
Tanti, JF ;
Behrends, J ;
Pesesse, X ;
Sasaki, T ;
Penninger, J ;
Doherty, M ;
Malaisse, W ;
Dumont, JE ;
Le Marchand-Brustel, Y ;
Erneux, C ;
Hue, L ;
Schurmans, S .
NATURE, 2001, 409 (6816) :92-97
[8]   Signaling mechanisms that regulate glucose transport [J].
Czech, MP ;
Corvera, S .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (04) :1865-1868
[9]  
EXCOFFIER L, 1995, MOL BIOL EVOL, V12, P921
[10]   Function and dysfunction of aPKC isoforms for glucose transport in insulin-sensitive and insulin-resistant states [J].
Farese, RV .
AMERICAN JOURNAL OF PHYSIOLOGY-ENDOCRINOLOGY AND METABOLISM, 2002, 283 (01) :E1-E11