Quantum-limited metrology with product states

被引:95
作者
Boixo, Sergio [1 ,2 ]
Datta, Animesh [1 ]
Flammia, Steven T. [1 ,3 ]
Shaji, Anil [1 ]
Bagan, Emilio [1 ,4 ]
Caves, Carlton M. [1 ,5 ]
机构
[1] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA
[2] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
[3] Perimeter Inst Theoret Phys, Waterloo, ON N2L 2Y5, Canada
[4] Univ Autonoma Barcelona, Fis Teor Grp, E-08193 Barcelona, Spain
[5] Univ Queensland, Dept Phys, Brisbane, Qld 4072, Australia
关键词
D O I
10.1103/PhysRevA.77.012317
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We study the performance of initial product states of n-body systems in generalized quantum metrology protocols that involve estimating an unknown coupling constant in a nonlinear k-body (k < n) Hamiltonian. We obtain the theoretical lower bound on the uncertainty in the estimate of the parameter. For arbitrary initial states, the lower bound scales as 1/n(k), and for initial product states, it scales as 1/n(k-1/2). We show that the latter scaling can be achieved using simple, separable measurements. We analyze in detail the case of a quadratic Hamiltonian (k=2), implementable with Bose-Einstein condensates. We formulate a simple model, based on the evolution of angular-momentum coherent states, which explains the O(n(-3/2)) scaling for k=2; the model shows that the entanglement generated by the quadratic Hamiltonian does not play a role in the enhanced sensitivity scaling. We show that phase decoherence does not affect the O(n(-3/2)) sensitivity scaling for initial product states.
引用
收藏
页数:15
相关论文
共 30 条
[1]  
[Anonymous], 1982, N HOLLAND SERIES STA
[2]   Breaking the Heisenberg limit with inefficient detectors -: art. no. 045801 [J].
Beltrán, J ;
Luis, A .
PHYSICAL REVIEW A, 2005, 72 (04)
[3]   On decoherence in quantum clock synchronization [J].
Boixo, S. ;
Caves, C. M. ;
Datta, A. ;
Shaji, A. .
LASER PHYSICS, 2006, 16 (11) :1525-1532
[4]  
BOIXO S, ARXIVQUANTPH07081330, P30401
[5]   Generalized limits for single-parameter quantum estimation [J].
Boixo, Sergio ;
Flammia, Steven T. ;
Caves, Carlton M. ;
Geremia, J. M. .
PHYSICAL REVIEW LETTERS, 2007, 98 (09)
[6]   Optimal frequency measurements with maximally correlated states [J].
Bollinger, JJ ;
Itano, WM ;
Wineland, DJ ;
Heinzen, DJ .
PHYSICAL REVIEW A, 1996, 54 (06) :R4649-R4652
[7]   Generalized uncertainty relations: Theory, examples, and Lorentz invariance [J].
Braunstein, SL ;
Caves, CM ;
Milburn, GJ .
ANNALS OF PHYSICS, 1996, 247 (01) :135-173
[8]   STATISTICAL DISTANCE AND THE GEOMETRY OF QUANTUM STATES [J].
BRAUNSTEIN, SL ;
CAVES, CM .
PHYSICAL REVIEW LETTERS, 1994, 72 (22) :3439-3443
[9]   Entanglement assisted metrology [J].
Cappellaro, P ;
Emerson, J ;
Boulant, N ;
Ramanathan, C ;
Lloyd, S ;
Cory, DG .
PHYSICAL REVIEW LETTERS, 2005, 94 (02)
[10]   Quantum information and precision measurement [J].
Childs, Andrew M. ;
Preskill, John ;
Reness, Joseph .
Journal of Modern Optics, 2000, 47 (2-3 SPEC.) :155-176