High-precision floating-point arithmetic in scientific computation

被引:81
作者
Bailey, DH [1 ]
机构
[1] Lawrence Berkeley Natl Lab, Computat Res Dev, Berkeley, CA USA
关键词
D O I
10.1109/MCSE.2005.52
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
IEEE 64-bit floating-point arithmetic is sufficient for most scientific applications, but a rapidly growing body of scientific computing applications requires a higher level of numeric precision. New software packages have yielded interesting scientific results that suggest numeric precision in scientific computations could be as important to program design as algorithms and data structures.
引用
收藏
页码:54 / 61
页数:8
相关论文
共 24 条
[1]  
[Anonymous], 2003, MATH EXPT PLAUSIBLE
[2]   On the rapid computation of various polylogarithmic constants [J].
Bailey, D ;
Borwein, P ;
Plouffe, S .
MATHEMATICS OF COMPUTATION, 1997, 66 (218) :903-913
[3]  
Bailey D.H., 2004, EXPT MATH, V11, P527
[4]   Universal variational expansion for high-precision bound-state calculations in three-body systems. Applications to weakly bound, adiabatic and two-shell cluster systems [J].
Bailey, DH ;
Frolov, AM .
JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2002, 35 (20) :4287-4298
[5]  
BAILEY DH, 1993, PROCEEDINGS OF THE SIXTH SIAM CONFERENCE ON PARALLEL PROCESSING FOR SCIENTIFIC COMPUTING, VOLS 1 AND 2, P52
[6]  
Bailey DH, 2001, MATH COMPUT, V70, P1719, DOI 10.1090/S0025-5718-00-01278-3
[7]   On the random character of fundamental constant expansions [J].
Bailey, DH ;
Crandall, RE .
EXPERIMENTAL MATHEMATICS, 2001, 10 (02) :175-190
[8]   Integer relation detection [J].
Bailey, DH .
COMPUTING IN SCIENCE & ENGINEERING, 2000, 2 (01) :24-28
[9]  
BAILEY DH, 1999, 17 ORDER POLYLOGARIT
[10]  
BAILEY DH, 2004, HIGHLY PARALLEL HIGH