Dual activators of the sterol biosynthetic pathway of Saccharomyces cerevisiae:: Similar activation/regulatory domains but different response mechanisms

被引:110
作者
Davies, BSJ [1 ]
Wang, HS [1 ]
Rine, J [1 ]
机构
[1] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA
关键词
D O I
10.1128/MCB.25.16.7375-7385.2005
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Genes encoding biosynthetic enzymes that make ergosterol, the major fungal membrane sterol, are regulated, in part, at the transcriptional level. Two transcription factors, Upc2p and Ecm22p, bind to the promoters of most ergosterol biosynthetic (ERG) genes, including ERG2 and ERG3, and activate these genes upon sterol depletion. We have identified the transcriptional activation domains of Upc2p and Ecm22p and found that UPC2-1, a mutation that allows cells to take up sterols aerobically, increased the potency of the activation domain. The equivalent mutation in ECM22 also greatly enhanced transcriptional activation. The C-terminal regions of Upc2p and Ecm22p, which contained activation domains, also conferred regulation in response to sterol levels. Hence, the activation and regulatory domains of these proteins overlapped. However, the two proteins differed markedly in how they respond to an increased need for sterols. Upon inducing conditions, Upc2p levels increased, and chromatin immunoprecipitation experiments revealed more Upc2p at promoters even when the activation/regulatory domains were tethered to a different DNA-binding domain. However, induction resulted in decreased Ecm22p levels and a corresponding decrease in the amount of Ecm22p bound to promoters. Thus, these two activators differ in their contributions to the regulation of their targets.
引用
收藏
页码:7375 / 7385
页数:11
相关论文
共 41 条
[1]   Reciprocal regulation of anaerobic and aerobic cell wall mannoprotein gene expression in Saccharomyces cerevisiae [J].
Abramova, N ;
Sertil, O ;
Mehta, S ;
Lowry, CV .
JOURNAL OF BACTERIOLOGY, 2001, 183 (09) :2881-2887
[2]  
Abramova NE, 2001, GENETICS, V157, P1169
[3]   Mot1p is essential for TBP recruitment to selected promoters during in vivo gene activation [J].
Andrau, JC ;
Van Oevelen, CJC ;
Van Teeffelen, HAAM ;
Weil, PA ;
Holstege, FCP ;
Timmers, HTM .
EMBO JOURNAL, 2002, 21 (19) :5173-5183
[4]   ANAEROBIC NUTRITION OF SACCHAROMYCES CEREVISIAE .1. ERGOSTEROL REQUIREMENT FOR GROWTH IN A DEFINED MEDIUM [J].
ANDREASEN, AA ;
STIER, TJB .
JOURNAL OF CELLULAR AND COMPARATIVE PHYSIOLOGY, 1953, 41 (01) :23-36
[5]   Positive and negative regulation of a sterol biosynthetic gene (ERG3) in the post-squalene portion of the yeast ergosterol pathway [J].
ArthingtonSkaggs, BA ;
Crowell, DN ;
Yang, H ;
Sturley, SL ;
Bard, M .
FEBS LETTERS, 1996, 392 (02) :161-165
[6]  
Burke D., 2000, Methods in Yeast Genetics Plainview, NY, V2000
[7]   Finding functional features in Saccharomyces genomes by phylogenetic footprinting [J].
Cliften, P ;
Sudarsanam, P ;
Desikan, A ;
Fulton, L ;
Fulton, B ;
Majors, J ;
Waterston, R ;
Cohen, BA ;
Johnston, M .
SCIENCE, 2003, 301 (5629) :71-76
[8]   A mutation in a purported regulatory gene affects control of sterol uptake in Saccharomyces cerevisiae [J].
Crowley, JH ;
Leak, FW ;
Shianna, KV ;
Tove, S ;
Parks, LW .
JOURNAL OF BACTERIOLOGY, 1998, 180 (16) :4177-4183
[9]   The Ashbya gossypii genome as a tool for mapping the ancient Saccharomyces cerevisiae genome [J].
Dietrich, FS ;
Voegeli, S ;
Brachat, S ;
Lerch, A ;
Gates, K ;
Steiner, S ;
Mohr, C ;
Pöhlmann, R ;
Luedi, P ;
Choi, SD ;
Wing, RA ;
Flavier, A ;
Gaffney, TD ;
Phillippsen, P .
SCIENCE, 2004, 304 (5668) :304-307
[10]   FEEDBACK-REGULATION OF 3-HYDROXY-3-METHYLGLUTARYL COENZYME-A REDUCTASE IN SACCHAROMYCES-CEREVISIAE [J].
DIMSTERDENK, D ;
THORSNESS, MK ;
RINE, J .
MOLECULAR BIOLOGY OF THE CELL, 1994, 5 (06) :655-665