Identification of the binding surface on β-lactamase for GroEL by limited proteolysis and MALDI mass spectrometry

被引:21
作者
Gervasoni, P
Staudenmann, W
James, P
Plückthun, A
机构
[1] Univ Zurich, Inst Biochem, CH-8057 Zurich, Switzerland
[2] ETH Zentrum, Prot Chem Lab, CH-8092 Zurich, Switzerland
关键词
D O I
10.1021/bi980258q
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Escherichia coli beta-lactamase, alone or as a complex with GroEL at 48 degrees C, was partially digested with trypsin, endoproteinase Glu-C, or thermolysin. Peptides were analyzed by matrix-assisted laser desorption and ionization mass spectrometry and aligned with the known sequence. From the protease cleavage sites which become protected upon binding and those which become newly accessible, a model of the complex is proposed in which the carboxy-terminal helix has melted, two loops form the binding interface and the large beta-sheet become partially uncovered by the slight dislocation of other structural elements. This explains how hydrophobic surface on the substrate protein can become accessible while scarcely disrupting the hydrogen bond network of the native structure. An analysis of the GroEL-bound peptides bound after digestion of the beta-lactamase showed no obvious sequence motifs, indicating that binding is provided by hydrophobic patches in the three-dimensional structure.
引用
收藏
页码:11660 / 11669
页数:10
相关论文
共 59 条
[1]   A STANDARD NUMBERING SCHEME FOR THE CLASS-A BETA-LACTAMASES [J].
AMBLER, RP ;
COULSON, AFW ;
FRERE, JM ;
GHUYSEN, JM ;
JORIS, B ;
FORSMAN, M ;
LEVESQUE, RC ;
TIRABY, G ;
WALEY, SG .
BIOCHEMICAL JOURNAL, 1991, 276 :269-270
[2]  
[Anonymous], FOLD DES
[3]   Calorimetric observation of a GroEL-protein binding reaction with little contribution of hydrophobic interaction [J].
Aoki, K ;
Taguchi, H ;
Shindo, Y ;
Yoshida, M ;
Ogasahara, K ;
Yutani, K ;
Tanaka, N .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (51) :32158-32162
[4]   BINDING OF A CHAPERONIN TO THE FOLDING INTERMEDIATES OF LACTATE-DEHYDROGENASE [J].
BADCOE, IG ;
SMITH, CJ ;
WOOD, S ;
HALSALL, DJ ;
HOLBROOK, JJ ;
LUND, P ;
CLARKE, AR .
BIOCHEMISTRY, 1991, 30 (38) :9195-9200
[5]  
Beavis RC, 1996, METHOD ENZYMOL, V270, P519
[6]   THE CRYSTAL-STRUCTURE OF THE BACTERIAL CHAPERONIN GROEL AT 2.8-ANGSTROM [J].
BRAIG, K ;
OTWINOWSKI, Z ;
HEGDE, R ;
BOISVERT, DC ;
JOACHIMIAK, A ;
HORWICH, AL ;
SIGLER, PB .
NATURE, 1994, 371 (6498) :578-586
[7]   A POLYPEPTIDE BOUND BY THE CHAPERONIN GROEL IS LOCALIZED WITHIN A CENTRAL CAVITY [J].
BRAIG, K ;
SIMON, M ;
FURUYA, F ;
HAINFELD, JF ;
HORWICH, AL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (09) :3978-3982
[8]   Model peptide studies demonstrate that amphipathic secondary structures can be recognized by the chaperonin GroEL (cpn60) [J].
Brazil, BT ;
Cleland, JL ;
McDowell, RS ;
Skelton, NJ ;
Paris, K ;
Horowitz, PM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (08) :5105-5111
[9]   A structural model for GroEL-polypeptide recognition [J].
Buckle, AM ;
Zahn, R ;
Fersht, AR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (08) :3571-3575
[10]   LOCATION OF A FOLDING PROTEIN AND SHAPE CHANGES IN GROEL-GROES COMPLEXES IMAGED BY CRYOELECTRON MICROSCOPY [J].
CHEN, S ;
ROSEMAN, AM ;
HUNTER, AS ;
WOOD, SP ;
BURSTON, SG ;
RANSON, NA ;
CLARKE, AR ;
SAIBIL, HR .
NATURE, 1994, 371 (6494) :261-264