Quantitative factor analysis of resolution limit in electron beam lithography using the edge roughness evaluation method

被引:26
作者
Yoshizawa, M [1 ]
Moriya, S [1 ]
机构
[1] Sony Corp, ULSI R&D Labs, Atsugi, Kanagawa 2430014, Japan
来源
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B | 2000年 / 18卷 / 06期
关键词
D O I
10.1116/1.1319844
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Various factors influencing the resolution limit (RL) in electron beam (EB) lithography have been analyzed quantitatively using the edge roughness evaluation (ERE) method. The ERE method is based on the experimental finding that line edge roughness of a resist pattern is inversely proportional to the slope of the Gaussian-distributed quasi-beam-profile (QBP). The analysis reveals that beam blur and development process are primary factors of RL, that electron forward scattering is negligible with the resist thickness under 200 nm, and that the effect of aperture degradation on RL is as large as that of resist performance. A necessary and sufficient condition for realizing 50 nm patterns is following. Use of EB lithography instruments of which beam blur is under 31 nm, resist thickness of 200 nm, and 20% improvement of the resist performance accompanying optimum development condition. (C) 2000 American Vacuum Society. [S0734-211X(00)09806-1].
引用
收藏
页码:3105 / 3110
页数:6
相关论文
共 13 条
[1]  
AZUMA T, 1991, P 1991 INT MICR C, P181
[2]  
FOURIE JT, 1971, SCANNING ELECT MICRO, P127
[3]   Imaging capabilities of proximity X-ray lithography at 70 nm ground rules [J].
Krasnoperova, AA ;
Rippstein, R ;
Flamholz, A ;
Kratchmer, E ;
Wind, S ;
Brooks, C ;
Lercel, M .
EMERGING LITHOGRAPHIC TECHNOLOGIES III, PTS 1 AND 2, 1999, 3676 :24-39
[4]  
Nakamura J., 1998, Journal of Photopolymer Science and Technology, V11, P571, DOI 10.2494/photopolymer.11.571
[5]   Metrology methods for quantifying edge roughness II [J].
Nelson, CM ;
Palmateer, SC ;
Forte, AR ;
Cann, SG ;
Deneault, S ;
Lyszczarz, TM .
METROLOGY, INSPECTION, AND PROCESS CONTROL FOR MICROLITHOGRAPHY XIII, PTS 1 AND 2, 1999, 3677 :53-61
[6]   Projection reduction exposure with variable axis immersion lenses: Next generation lithography [J].
Pfeiffer, HC ;
Dhaliwal, RS ;
Golladay, SD ;
Doran, SK ;
Gordon, MS ;
Groves, TR ;
Kendall, RA ;
Lieberman, JE ;
Petric, PF ;
Pinckney, DJ ;
Quickle, RJ ;
Robinson, CF ;
Rockrohr, JD ;
Senesi, JJ ;
Stickel, W ;
Tressler, EV ;
Tanimoto, A ;
Yamaguchi, T ;
Okamoto, K ;
Suzuki, K ;
Okino, T ;
Kawata, S ;
Morita, K ;
Suziki, SC ;
Shimizu, H ;
Kojima, S ;
Varnell, G ;
Novak, WT ;
Stumbo, DP ;
Sogard, M .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 1999, 17 (06) :2840-2846
[7]   Writing-strategy for a high-throughput SCALPEL system [J].
Stanton, ST ;
Liddle, JA ;
Felker, JA ;
Waskiewicz, WK ;
Harriott, LR .
EMERGING LITHOGRAPHIC TECHNOLOGIES III, PTS 1 AND 2, 1999, 3676 :194-206
[8]   Mask bias requirement for 0.13 μm e-beam block exposure lithography [J].
Takahashi, K ;
Kanata, H ;
Nara, Y .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 1998, 16 (06) :3279-3283
[9]   MECHANISM OF RESIST PATTERN COLLAPSE DURING DEVELOPMENT PROCESS [J].
TANAKA, T ;
MORIGAMI, M ;
ATODA, N .
JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & REVIEW PAPERS, 1993, 32 (12B) :6059-6064
[10]   Negative electron-beam nanofabrication resist using acid-catalyzed protection of polyphenol provided by phenylcarbinol [J].
Uchino, S ;
Yamamoto, J ;
Migitaka, S ;
Kojima, K ;
Hashimoto, M ;
Shiraishi, H .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 1998, 16 (06) :3684-3688