Fast simulation of new coins from old

被引:42
作者
Nacu, E [1 ]
Peres, Y
机构
[1] Univ Calif Berkeley, Dept Stat, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
关键词
simulation; approximation theory; Bernstein polynomials; real analytic functions; unbiasing;
D O I
10.1214/105051604000000549
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let S subset of (0, 1). Given a known function f : S --> (0, 1), we consider the problem of using independent tosses of a coin with probability of heads p (where p is an element of S is unknown) to simulate a coin with probability of heads f(p). We prove that if S is a closed interval and f is real analytic on S, then f has a fast simulation on S (the number of p-coin tosses needed has exponential tails). Conversely, if a function f has a fast simulation on an open set, then it is real analytic on that set.
引用
收藏
页码:93 / 115
页数:23
相关论文
共 13 条
[1]  
Ahlfors LV., 1978, COMPLEX ANAL
[2]  
[Anonymous], 1951, Appl. Math Ser, DOI DOI 10.1080/01621459.1949.10483310
[3]  
Cover T. M., 2005, ELEM INF THEORY, DOI 10.1002/047174882X
[4]  
Durrett R, 1996, PROBABILITY THEORY E
[5]   EFFICIENT CONSTRUCTION OF AN UNBIASED RANDOM SEQUENCE [J].
ELIAS, P .
ANNALS OF MATHEMATICAL STATISTICS, 1972, 43 (03) :865-&
[6]  
Hardy G.H., 1959, INEQUALITIES
[7]   Nonexistence of a class of variate generation schemes [J].
Henderson, SG ;
Glynn, PW .
OPERATIONS RESEARCH LETTERS, 2003, 31 (02) :83-89
[9]  
Keane M. S., 1994, ACM Transactions on Modeling and Computer Simulation, V4, P213, DOI 10.1145/175007.175019
[10]  
Knuth D. E., 1976, ALGORITHMS COMPLEXIT, P357