The human phylome

被引:125
作者
Huerta-Cepas, Jaime [1 ]
Dopazo, Hernan [1 ]
Dopazo, Joaquin [1 ]
Gabaldon, Toni [1 ]
机构
[1] Ctr Invest Principe Felipe, Bioinformat Dept, Valencia 46013, Spain
关键词
D O I
10.1186/gb-2007-8-6-r109
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: Phylogenomics analyses serve to establish evolutionary relationships among organisms and their genes. A phylome, the complete collection of all gene phylogenies in a genome, constitutes a valuable source of information, but its use in large genomes still constitutes a technical challenge. The use of phylomes also requires the development of new methods that help us to interpret them. Results: We reconstruct here the human phylome, which includes the evolutionary relationships of all human proteins and their homologs among 39 fully sequenced eukaryotes. Phylogenetic techniques used include alignment trimming, branch length optimization, evolutionary model testing and maximum likelihood and Bayesian methods. Although differences with alternative topologies are minor, most of the trees support the Coelomata and Unikont hypotheses as well as the grouping of primates with laurasatheria to the exclusion of rodents. We assess the extent of gene duplication events and their relationship with the functional roles of the protein families involved. We find support for at least one, and probably two, rounds of whole genome duplications before vertebrate radiation. Using a novel algorithm that is independent from a species phylogeny, we derive orthology and paralogy relationships of human proteins among eukaryotic genomes. Conclusion: Topological variations among phylogenies for different genes are to be expected, highlighting the danger of gene-sampling effects in phylogenomic analyses. Several links can be established between the functions of gene families duplicated at certain phylogenetic splits and major evolutionary transitions in those lineages. The pipeline implemented here can be easily adapted for use in other organisms.
引用
收藏
页数:16
相关论文
共 92 条
[1]   FunShift: a database of function shift analysis on protein subfamilies [J].
Abhiman, S ;
Sonnhammer, ELL .
NUCLEIC ACIDS RESEARCH, 2005, 33 :D197-D200
[2]  
Adachi J, 1996, J MOL EVOL, V42, P459
[3]   Evidence for a clade of nematodes, arthropods and other moulting animals [J].
Aguinaldo, AMA ;
Turbeville, JM ;
Linford, LS ;
Rivera, MC ;
Garey, JR ;
Raff, RA ;
Lake, JA .
NATURE, 1997, 387 (6632) :489-493
[4]  
Akaike H., 1973, 2 INT S INFORM THEOR, P267, DOI [DOI 10.1007/978-1-4612-1694-0_15, 10.1007/978-1-4612-1694-0_15]
[5]   BABELOMICS:: a systems biology perspective in the functional annotation of genome-scale experiments [J].
Al-Shahrour, Fatima ;
Minguez, Pablo ;
Tarraga, Joaquin ;
Montaner, David ;
Alloza, Eva ;
Vaquerizas, Juan M. ;
Conde, Lucia ;
Blaschke, Christian ;
Vera, Javier ;
Dopazo, Joaquin .
NUCLEIC ACIDS RESEARCH, 2006, 34 :W472-W476
[6]   Phylogeographic support for horizontal gene transfer involving sympatric bruchid species [J].
Alvarez, Nadir ;
Benrey, Betty ;
Hossaert-McKey, Martine ;
Grill, Andrea ;
McKey, Doyle ;
Galtier, Nicolas .
BIOLOGY DIRECT, 2006, 1 (1)
[7]   Phylogenetic analyses of diplomonad genes reveal frequent lateral gene transfers affecting eukaryotes [J].
Andersson, JO ;
Sjögren, ÅM ;
Davis, LAM ;
Embley, TM ;
Roger, AJ .
CURRENT BIOLOGY, 2003, 13 (02) :94-104
[8]   Bayesian gene/species tree reconciliation and orthology analysis using MCMC [J].
Arvestad, Lars ;
Berglund, Ann-Charlotte ;
Lagergren, Jens ;
Sennblad, Bengt .
BIOINFORMATICS, 2003, 19 :i7-i15
[9]   Primate segmental duplications: crucibles of evolution, diversity and disease [J].
Bailey, Jeffrey A. ;
Eichler, Evan E. .
NATURE REVIEWS GENETICS, 2006, 7 (07) :552-564
[10]   Interpretive proteomics - finding biological meaning in genome and proteome databases [J].
Benner, SA .
ADVANCES IN ENZYME REGULATION, VOL 43, 2003, 43 :271-359