Polyaniline/carbon nanotube composites: starting with phenylamino functionalized carbon nanotubes

被引:99
作者
Philip, B [1 ]
Xie, JN [1 ]
Abraham, JK [1 ]
Varadan, VK [1 ]
机构
[1] Penn State Univ, Ctr Engn Elect & Acoust Mat & Device, University Pk, PA 16802 USA
关键词
D O I
10.1007/s00289-004-0321-x
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Composites of carbon a nanotube with polymers are a developing and interesting area of research. The dispersion of the nanotube in polymer matrices is an important factor while making its nanocomposites. Even though in-situ polymerization approach offers a better approach for synthesizing homogeneous polymer nanotube composites, the dispersion of the nanotubes in the monomer solution is a problem. In this article we report a new chemical method for dispersing nanotubes in monomer and the preparation of uniform tubular composite of polyaniline (PANI) and multiwalled carbon nanotube (MWNT). For this the oxidized multiwalled nanotube (o-MWNT) was functionalized with p-phenylenediamine, which gave phenylamine functional groups on the surface. This functionalization helped to disperse the nanotubes in acidic solution. The in-situ polymerization of aniline in the presence of these well dispersed nanotubes gave a new tubular composite of carbon nanotube having an ordered uniform encapsulation of doped polyaniline. The phenylamine functional groups on the surface were grown into polyaniline chain so that the composite contains polyaniline functionalized CNT and they were no more an "impurity" in the final nanocomposite. The microscopic and structural properties of this composite were compared with that of a composite prepared under identical condition using o-MWNT.
引用
收藏
页码:127 / 138
页数:12
相关论文
共 32 条
[1]  
Andrews R, 2002, MACROMOL MATER ENG, V287, P395, DOI 10.1002/1439-2054(20020601)287:6<395::AID-MAME395>3.0.CO
[2]  
2-S
[3]   Synthesis of a new polyaniline/nanotube composite:: "in-situ" polymerisation and charge transfer through site-selective interaction [J].
Cochet, M ;
Maser, WK ;
Benito, AM ;
Callejas, MA ;
Martínez, MT ;
Benoit, JM ;
Schreiber, J ;
Chauvet, O .
CHEMICAL COMMUNICATIONS, 2001, (16) :1450-1451
[4]  
Curran SA, 1998, ADV MATER, V10, P1091, DOI 10.1002/(SICI)1521-4095(199810)10:14<1091::AID-ADMA1091>3.0.CO
[5]  
2-L
[6]   Direct observation of polymer sheathing in carbon nanotube-polycarbonate composites [J].
Ding, W ;
Eitan, A ;
Fisher, FT ;
Chen, X ;
Dikin, DA ;
Andrews, R ;
Brinson, LC ;
Schadler, LS ;
Ruoff, RS .
NANO LETTERS, 2003, 3 (11) :1593-1597
[7]  
Fan JH, 1999, J APPL POLYM SCI, V74, P2605, DOI 10.1002/(SICI)1097-4628(19991209)74:11<2605::AID-APP6>3.0.CO
[8]  
2-R
[9]   Well-aligned polyaniline/carbon-nanotube composite films grown by in-situ aniline polymerization [J].
Feng, W ;
Bai, XD ;
Lian, YQ ;
Liang, J ;
Wang, XG ;
Yoshino, K .
CARBON, 2003, 41 (08) :1551-1557
[10]  
Hirsch A, 2002, ANGEW CHEM INT EDIT, V41, P1853, DOI 10.1002/1521-3773(20020603)41:11<1853::AID-ANIE1853>3.0.CO