Transients and attractors in epidemics

被引:110
作者
Bauch, CT [1 ]
Earn, DJD [1 ]
机构
[1] McMaster Univ, Dept Math & Stat, Hamilton, ON L8S 4K1, Canada
关键词
childhood disease dynamics; seasonal forcing; SEIR model; perturbation theory; demographic stochasticity; Poincare map;
D O I
10.1098/rspb.2003.2410
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Historical records of childhood disease incidence reveal complex dynamics. For measles, a simple model has indicated that epidemic patterns represent attractors of a nonlinear dynamic system and that transitions between different attractors are driven by slow changes in birth rates and vaccination levels. The same analysis can explain the main features of chickenpox dynamics, but fails for rubella and whooping cough. We show that an additional (perturbative) analysis of the model, together with knowledge of the population size in question, can account for all the observed incidence patterns by predicting how stochastically sustained transient dynamics should be manifested in these systems.
引用
收藏
页码:1573 / 1578
页数:6
相关论文
共 28 条