Fractal estimation using models on multiscale trees

被引:27
作者
Fieguth, PW
Willsky, AS
机构
[1] Laboratory for Information and Decision Systems, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridee
关键词
D O I
10.1109/78.502347
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this correspondence, we estimate the Hurst parameter H of fractional Brownian motion (or, by extension, the fractal exponent phi of stochastic processes having 1/f(phi)-like spectral by applying a recently introduced multiresolution framework. This framework admits an efficient likelihood function evaluation, allowing us to compute the maximum likelihood estimate of this fractal parameter with relative ease. In addition to yielding results that compare well with other proposed methods, and in contrast with other approaches, our method is directly applicable with, at most, very simple modification in a variety of other contexts including fractal estimation given irregularly sampled data or nonstationary measurement noise and the estimation of fractal parameters for 2-D random fields.
引用
收藏
页码:1297 / 1300
页数:4
相关论文
共 11 条
[1]   MULTISCALE RECURSIVE ESTIMATION, DATA FUSION, AND REGULARIZATION [J].
CHOU, KC ;
WILLSKY, AS ;
BENVENISTE, A .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1994, 39 (03) :464-478
[2]  
FIEGUTH PW, 1995, THESIS MIT
[3]   WAVELET ANALYSIS AND SYNTHESIS OF FRACTIONAL BROWNIAN-MOTION [J].
FLANDRIN, P .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1992, 38 (02) :910-917
[4]   FRACTAL ESTIMATION FROM NOISY DATA VIA DISCRETE FRACTIONAL GAUSSIAN-NOISE (DFGN) AND THE HAAR BASIS [J].
KAPLAN, LM ;
KUO, CCJ .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1993, 41 (12) :3554-3562
[5]  
LUETTGEN M, 1994, IEEE T IMAGE PROCESS, V4
[6]   MULTISCALE REPRESENTATIONS OF MARKOV RANDOM-FIELDS [J].
LUETTGEN, MR ;
KARL, WC ;
WILLSKY, AS ;
TENNEY, RR .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1993, 41 (12) :3377-3396
[7]   FRACTIONAL BROWNIAN-MOTION - A MAXIMUM-LIKELIHOOD ESTIMATOR AND ITS APPLICATION TO IMAGE TEXTURE [J].
LUNDAHL, T ;
OHLEY, WJ ;
KAY, SM ;
SIFFERT, R .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 1986, 5 (03) :152-161
[8]   FRACTIONAL BROWNIAN MOTIONS FRACTIONAL NOISES AND APPLICATIONS [J].
MANDELBROT, BB ;
VANNESS, JW .
SIAM REVIEW, 1968, 10 (04) :422-+
[9]  
TEWFIK A, 1993, IEEE T SIGNAL PROCES, V41, P2977
[10]   CORRELATION STRUCTURE OF THE DISCRETE WAVELET COEFFICIENTS OF FRACTIONAL BROWNIAN-MOTION [J].
TEWFIK, AH ;
KIM, M .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1992, 38 (02) :904-909