Stochastic series expansion method for quantum Ising models with arbitrary interactions

被引:118
作者
Sandvik, AW [1 ]
机构
[1] Abo Akad Univ, Dept Phys, FIN-20500 Turku, Finland
来源
PHYSICAL REVIEW E | 2003年 / 68卷 / 05期
关键词
D O I
10.1103/PhysRevE.68.056701
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A quantum Monte Carlo algorithm for the transverse Ising model with arbitrary short- or long-range interactions is presented. The algorithm is based on sampling the diagonal matrix elements of the power-series expansion of the density matrix (stochastic series expansion), and avoids the interaction summations necessary in conventional methods. In the case of long-range interactions, the scaling of the computation time with the system size N is therefore reduced from N-2 to N ln(N). The method is tested on a one-dimensional ferromagnet in a transverse field, with interactions decaying as 1/r(2).
引用
收藏
页数:9
相关论文
共 45 条
[1]   SOME NUMERICAL RESULTS ON KONDO PROBLEM AND INVERSE SQUARE ONE-DIMENSIONAL ISING MODEL [J].
ANDERSON, PW ;
YUVAL, G .
JOURNAL OF PHYSICS PART C SOLID STATE PHYSICS, 1971, 4 (05) :607-&
[2]   Quantum critical behavior for a model magnet [J].
Bitko, D ;
Rosenbaum, TF ;
Aeppli, G .
PHYSICAL REVIEW LETTERS, 1996, 77 (05) :940-943
[3]   ONE-DIMENSIONAL ISING-MODEL WITH LONG-RANGE INTERACTIONS - A RENORMALIZATION-GROUP TREATMENT [J].
CANNAS, SA .
PHYSICAL REVIEW B, 1995, 52 (05) :3034-3037
[4]   MONTE-CARLO SIMULATION OF QUANTUM SPIN SYSTEMS [J].
CHAKRAVARTY, S ;
STEIN, DB .
PHYSICAL REVIEW LETTERS, 1982, 49 (08) :582-585
[5]   Phase transitions in the quantum Ising and rotor models with a long-range interaction [J].
Dutta, A ;
Bhattacharjee, JK .
PHYSICAL REVIEW B, 2001, 64 (18)
[6]   The loop algorithm [J].
Evertz, HG .
ADVANCES IN PHYSICS, 2003, 52 (01) :1-66
[7]   QUANTUM ANNEALING - A NEW METHOD FOR MINIMIZING MULTIDIMENSIONAL FUNCTIONS [J].
FINNILA, AB ;
GOMEZ, MA ;
SEBENIK, C ;
STENSON, C ;
DOLL, JD .
CHEMICAL PHYSICS LETTERS, 1994, 219 (5-6) :343-348
[8]   RANDOM-CLUSTER MODEL .1. INTRODUCTION AND RELATION TO OTHER MODELS [J].
FORTUIN, CM ;
KASTELEYN, PW .
PHYSICA, 1972, 57 (04) :536-+
[9]   FINITE-RANGE SCALING STUDY OF THE 1D LONG-RANGE ISING-MODEL [J].
GLUMAC, Z ;
UZELAC, K .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (20) :4439-4452
[10]   QUANTUM CRITICAL-BEHAVIOR OF A 3-DIMENSIONAL ISING SPIN-GLASS IN A TRANSVERSE MAGNETIC-FIELD [J].
GUO, MY ;
BHATT, RN ;
HUSE, DA .
PHYSICAL REVIEW LETTERS, 1994, 72 (26) :4137-4140