Molecular evolution of hisB genes

被引:36
作者
Brilli, M [1 ]
Fani, R [1 ]
机构
[1] Dipartimento Biol Anim & Genet, I-50125 Florence, Italy
关键词
gmhB; hisN; evolution of metabolic pathways; gene fusion; gene duplication; patchwork hypothesis;
D O I
10.1007/s00239-003-2547-x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The sixth and eighth steps of histidine biosynthesis are catalyzed by an imidazole glycerolphosphate (IGP)dehydratase (EC 4.2.1.19) and by a histidinol-phosphate (HOL-P) phosphatase (EC 3.1.3.15), respectively. In the enterobacteria, in Campylobacter jejuni and in Xylella/Xanthomonas the two activities are associated with a single bifunctional polypeptide encoded by hisB. On the other hand, in Archaea, Eucarya, and most Bacteria the two activities are encoded by two separate genes. In this work we report a comparative analysis of the amino acid sequence of all the available HisB proteins, which allowed us to depict a likely evolutionary pathway leading to the present-day bifunctional hisB gene. According to the model that we propose, the bifunctional hisB gene is the result of a fusion event between two independent cistrons joined by domain-shuffling. The fusion event occurred recently in evolution, very likely in the proteobacterial lineage after the separation of the gamma- and the beta-subdivisions. Data obtained in this work established that a paralogous duplication event of an ancestral DDDD phosphatase encoding gene originated both the HOL-P phosphatase moiety of the E. coli hisB gene and the gmhB gene coding for a DDDD phosphatase, which is involved in the biosynthesis of a precursor of the inner core of the outer membrane lipopolysaccharides (LPS).
引用
收藏
页码:225 / 237
页数:13
相关论文
共 38 条
[1]   Histidine biosynthetic pathway and genes: Structure, regulation, and evolution [J].
Alifano, P ;
Fani, R ;
Lio, P ;
Lazcano, A ;
Bazzicalupo, M ;
Carlomagno, MS ;
Bruni, CB .
MICROBIOLOGICAL REVIEWS, 1996, 60 (01) :44-+
[2]   Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J].
Altschul, SF ;
Madden, TL ;
Schaffer, AA ;
Zhang, JH ;
Zhang, Z ;
Miller, W ;
Lipman, DJ .
NUCLEIC ACIDS RESEARCH, 1997, 25 (17) :3389-3402
[3]   Phosphoesterase domains associated with DNA polymerases of diverse origins [J].
Aravind, L ;
Koonin, EV .
NUCLEIC ACIDS RESEARCH, 1998, 26 (16) :3746-3752
[4]  
BRADY DR, 1973, J BIOL CHEM, V248, P2588
[5]  
Brilli Matteo, 2002, Origins of Life and Evolution of the Biosphere, V32, P488
[6]  
BROACH JR, 1981, MOL BIOL YEAST SACCH, P653
[7]   STRUCTURE AND FUNCTION OF THE SALMONELLA-TYPHIMURIUM AND ESCHERICHIA-COLI K-12 HISTIDINE OPERONS [J].
CARLOMAGNO, MS ;
CHIARIOTTI, L ;
ALIFANO, P ;
NAPPO, AG ;
BRUNI, CB .
JOURNAL OF MOLECULAR BIOLOGY, 1988, 203 (03) :585-606
[8]  
CLARKE PH, 1974, EVOLUTION MICROBIAL
[9]   The Ribosomal Database Project (RDP-II): previewing a new autoaligner that allows regular updates and the new prokaryotic taxonomy [J].
Cole, JR ;
Chai, B ;
Marsh, TL ;
Farris, RJ ;
Wang, Q ;
Kulam, SA ;
Chandra, S ;
McGarrell, DM ;
Schmidt, TM ;
Garrity, GM ;
Tiedje, JM .
NUCLEIC ACIDS RESEARCH, 2003, 31 (01) :442-443
[10]   Evolution of the structure and chromosomal distribution of histidine biosynthetic genes [J].
Fani, R ;
Mori, E ;
Tamburini, E ;
Lazcano, A .
ORIGINS OF LIFE AND EVOLUTION OF BIOSPHERES, 1998, 28 (4-6) :555-570