Edge of chaos and local activity domain of the Brusselator CNN

被引:40
作者
Dogaru, R [1 ]
Chua, LO
机构
[1] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA
[2] Univ Politehn Bucuresti, Dept Appl Elect & Informat Engn, Bucharest, Romania
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 1998年 / 8卷 / 06期
关键词
D O I
10.1142/S0218127498000899
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper presents an application of the local activity theory [Chua, 1998] to a specific reaction-diffusion cellular nonlinear network (CNN) with cells defined by a trimolecular model, called the Brusselator. Both the local activity domain and a subset called the "edge of chaos" are identified in the cell parameter space. Within these domains, various cell parameter points were selected to illustrate the effectiveness of the local activity theory in choosing the parameters for the emergence of complex (static and dynamic) patterns in a homogeneous lattice formed by coupled locally active cells.
引用
收藏
页码:1107 / 1130
页数:24
相关论文
共 10 条
[1]   AUTONOMOUS CELLULAR NEURAL NETWORKS - A UNIFIED PARADIGM FOR PATTERN-FORMATION AND ACTIVE WAVE-PROPAGATION [J].
CHUA, LO ;
HASLER, M ;
MOSCHYTZ, GS ;
NEIRYNCK, J .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 1995, 42 (10) :559-577
[2]  
Chua LO, 1998, CNN: A Paradigm for Complexity
[3]   Edge of chaos and local activity domain of FitzHugh-Nagumo equation [J].
Dogaru, R ;
Chua, LO .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1998, 8 (02) :211-257
[4]   EMERGENT COMPUTATION - SELF-ORGANIZING, COLLECTIVE, AND COOPERATIVE PHENOMENA IN NATURAL AND ARTIFICIAL COMPUTING NETWORKS - INTRODUCTION TO THE PROCEEDINGS OF THE 9TH ANNUAL CNLS CONFERENCE [J].
FORREST, S .
PHYSICA D-NONLINEAR PHENOMENA, 1990, 42 (1-3) :1-11
[5]   SYNERGETICS - FROM PATTERN-FORMATION TO PATTERN-ANALYSIS AND PATTERN-RECOGNITION [J].
HAKEN, H .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1994, 4 (05) :1069-1083
[6]   COMPUTATION AT THE EDGE OF CHAOS - PHASE-TRANSITIONS AND EMERGENT COMPUTATION [J].
LANGTON, CG .
PHYSICA D, 1990, 42 (1-3) :12-37
[7]  
Murray J.D., 2002, Mathematical Biology: I. An Introduction
[8]  
Nicolis G., 1989, Exploring Complexity: An Introduction
[9]  
Prigogine I., 1980, From Being to Becoming: Time and Complexity in the Physical Sciences
[10]  
SCHRODINGER E, 1967, WHAT IS LIFE PHYSICA