Prediction of aggregation rate and aggregation-prone segments in polypeptide sequences

被引:171
作者
Tartaglia, GG [1 ]
Cavalli, A [1 ]
Pellarin, R [1 ]
Caflisch, A [1 ]
机构
[1] Univ Zurich, Dept Biochem, CH-8057 Zurich, Switzerland
关键词
Alzheimer's disease; amyloid; protein aggregation rate; priori protein; species barrier; genetic algorithm; molecular dynamics;
D O I
10.1110/ps.051471205
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The reliable identification of beta-aggregating stretches in protein sequences is essential for the development of therapeutic agents for Alzheimer's and Parkinson's diseases, as well as other pathological conditions associated with protein deposition. Here, a model based on physicochemical properties and computational design of beta-aggregating peptide sequences is shown to be able to predict the aggregation rate over a large set of natural polypeptide sequences. Furthermore, the model identifies aggregation-prone fragments within proteins and predicts the parallel or anti-parallel beta-sheet organization in fibrils. The model recognizes different beta-aggregating segments in mammalian and nonmammalian priori proteins, providing insights into the species barrier for the transmission of the priori disease.
引用
收藏
页码:2723 / 2734
页数:12
相关论文
共 80 条
[1]   Multiple quantum solid-state NMR indicates a parallel, not antiparallel, organization of β-sheets in Alzheimer's β-amyloid fibrils [J].
Antzutkin, ON ;
Balbach, JJ ;
Leapman, RD ;
Rizzo, NW ;
Reed, J ;
Tycko, R .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (24) :13045-13050
[2]   Supramolecular structural constraints on Alzheimer's β-amyloid fibrils from electron microscopy and solid-state nuclear magnetic resonance [J].
Antzutkin, ON ;
Leapman, RD ;
Balbach, JJ ;
Tycko, R .
BIOCHEMISTRY, 2002, 41 (51) :15436-15450
[3]  
Asl LH, 1997, BLOOD, V90, P4799
[4]   Analysis of the structural and functional elements of the minimal active fragment of islet amyloid polypeptide (IAPP) - An experimental support for the key role of the phenylalanine residue in amyloid formation [J].
Azriel, R ;
Gazit, E .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (36) :34156-34161
[5]   Amyloid fibril formation by Aβ16-22, a seven-residue fragment of the Alzheimer's β-amyloid peptide, and structural characterization by solid state NMR [J].
Balbach, JJ ;
Ishii, Y ;
Antzutkin, ON ;
Leapman, RD ;
Rizzo, NW ;
Dyda, F ;
Reed, J ;
Tycko, R .
BIOCHEMISTRY, 2000, 39 (45) :13748-13759
[6]   An amyloid-forming peptide from the yeast prion Sup35 reveals a dehydrated β-sheet structure for amyloid [J].
Balbirnie, M ;
Grothe, R ;
Eisenberg, DS .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (05) :2375-2380
[7]   Amyloid β-protein (Aβ) assembly:: Aβ40 and Aβ42 oligomerize through distinct pathways [J].
Bitan, G ;
Kirkitadze, MD ;
Lomakin, A ;
Vollers, SS ;
Benedek, GB ;
Teplow, DB .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (01) :330-335
[8]   Assemblies of Alzheimer's peptides Aβ25-35 and Aβ31-35:: reverse-turn conformation and side-chain interactions revealed by X-ray diffraction [J].
Bond, JP ;
Deverin, SP ;
Inouye, H ;
El-Agnaf, OMA ;
Teeter, MM ;
Kirschner, DA .
JOURNAL OF STRUCTURAL BIOLOGY, 2003, 141 (02) :156-170
[9]   CHARMM - A PROGRAM FOR MACROMOLECULAR ENERGY, MINIMIZATION, AND DYNAMICS CALCULATIONS [J].
BROOKS, BR ;
BRUCCOLERI, RE ;
OLAFSON, BD ;
STATES, DJ ;
SWAMINATHAN, S ;
KARPLUS, M .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1983, 4 (02) :187-217
[10]   Nature disfavors sequences of alternating polar and non-polar amino acids: Implications for amyloidogenesis [J].
Broome, BM ;
Hecht, MH .
JOURNAL OF MOLECULAR BIOLOGY, 2000, 296 (04) :961-968