Balancing N-linked glycosylation to avoid disease

被引:49
作者
Freeze, HH [1 ]
Westphal, V [1 ]
机构
[1] Burnham Inst, La Jolla, CA 92037 USA
关键词
congenital disorder(s) of glycosylation; single nucleotide polymorphism; mental retardation; hepatitis; viral infection;
D O I
10.1016/S0300-9084(01)01292-5
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Complete loss of N-glycosylation is lethal in both yeast and mammals. Substantial deficiencies in some rate-limiting biosynthetic steps cause human congenital disorders of glycosylation (CDG). Patients have a range of clinical problems including variable degrees of mental retardation, liver dysfunction, and intestinal disorders. Over 60 mutations in phosphomannomutase (encoded by PMM2) diminish activity and cause CDG-Ia. The severe mutation R141H in PMM2 is lethal when homozygous, but heterozygous in about 1/70 Northern Europeans. Another disorder, CDG-Ic, is caused by mutations in ALG6, an alpha1,3glucosyl transferase used for lipid-linked precursor synthesis, yet some function-compromising mutations occur at a high frequency in this gene also. Maintenance of seemingly deleterious mutations implies a selective advantage or positive heterosis. One possible explanation for this is that production of infective viruses such as hepatitis virus B and C, or others that rely heavily on host N-glycosylation, is substantially inhibited when only a tiny fraction of their coat proteins is misglycosylated. In contrast, this reduced glycosylation does not affect the host. Prevalent functional mutations in rate-limiting glycosylation steps could provide some resistance to viral infections, but the cost of this insurance is CDG. A balanced glycosylation level attempts to accommodate these competing agendas. By assessing the occurrence of a series of N-glycosylation-compromising alleles in multi-genic diseases, it may be possible to determine whether impaired glycosylation is a risk factor or a major determinant underlying their pathology. (C) 2001 Societe francaise de biochimie et biologic moleculaire/Editions scientifiques et medicales Elsevier SAS. All rights reserved.
引用
收藏
页码:791 / 799
页数:9
相关论文
共 90 条
[1]   Congenital disorders of glycosylation: genetic model systems lead the way [J].
Aebi, M ;
Hennet, T .
TRENDS IN CELL BIOLOGY, 2001, 11 (03) :136-141
[2]   Searching for medicine's sweet spot [J].
Alper, J .
SCIENCE, 2001, 291 (5512) :2338-2343
[3]   Direct utilization of mannose for mammalian glycoprotein biosynthesis [J].
Alton, G ;
Hasilik, M ;
Niehues, R ;
Panneerselvam, K ;
Etchison, JR ;
Fana, F ;
Freeze, HH .
GLYCOBIOLOGY, 1998, 8 (03) :285-295
[4]   Requirement of the Lec35 gene for all known classes of monosaccharide-P-dolichol-dependent glycosyltransferase reactions in mammals [J].
Anand, M ;
Rush, JS ;
Ray, S ;
Doucey, MA ;
Weik, J ;
Ware, FE ;
Hofsteenge, J ;
Waechter, CJ ;
Lehrman, MA .
MOLECULAR BIOLOGY OF THE CELL, 2001, 12 (02) :487-501
[5]   On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database [J].
Apweiler, R ;
Hermjakob, H ;
Sharon, N .
BIOCHIMICA ET BIOPHYSICA ACTA-GENERAL SUBJECTS, 1999, 1473 (01) :4-8
[6]  
Ashworth JL, 1999, J CELL SCI, V112, P4163
[7]   The relative power of SNPs and haplotype as genetic markers for association tests [J].
Bader, JS .
PHARMACOGENOMICS, 2001, 2 (01) :11-24
[8]  
Bresters D, 1999, ACTA PAEDIATR, V88, P98
[9]   The dolichol pathway of N-linked glycosylation [J].
Burda, P ;
Aebi, M .
BIOCHIMICA ET BIOPHYSICA ACTA-GENERAL SUBJECTS, 1999, 1426 (02) :239-257
[10]   Stepwise assembly of the lipid-linked oligosaccharide in the endoplasmic reticulum of Saccharomyces cerevisiae: Identification of the ALG9 gene encoding a putative mannosyl transferase [J].
Burda, P ;
Heesen, ST ;
Brachat, A ;
Wach, A ;
Dusterhoft, A ;
Aebi, M .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (14) :7160-7165