Chaos synchronization in complex networks

被引:67
作者
Chen, Maoyin [1 ,2 ]
机构
[1] Tsinghua Univ, Inst Proc Engn Control, Dept Automat, Beijing 100084, Peoples R China
[2] Tsinghua Univ, Tsinghua Natl Lab Informat Sci & Technol, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
chaos synchronization; complex networks; matrix measure; nonsynchronizability; synchronizability;
D O I
10.1109/TCSI.2008.916436
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we study chaos synchronization in complex networks with time-invariant, time-varying and switching configurations based on the matrix measure of complex matrices. To begin with, we propose an analytical condition for chaos synchronization. in complex networks with a time-invariant configuration. Secondly, we obtain some less conservative synchronization conditions for networks with a time-varying configuration. Thirdly, we consider chaos synchronization in networks with time-average and switching configurations. If complex subnetworks satisfy certain conditions, the networks with time-average and switching configurations are M-synchronizable. At last, we analyze the nonsynchronizability of complex networks. Chaos synchronization in complex networks can't be realized if the coupling configuration and the inner-coupling matrix satisfy certain conditions. Theoretical analysis and numerical simulations verify the effectiveness of the proposed synchronization criteria.
引用
收藏
页码:1335 / 1346
页数:12
相关论文
共 38 条
[1]   Statistical mechanics of complex networks [J].
Albert, R ;
Barabási, AL .
REVIEWS OF MODERN PHYSICS, 2002, 74 (01) :47-97
[2]   Synchronized state of coupled dynamics on time-varying networks [J].
Amritkar, RE ;
Hu, CK .
CHAOS, 2006, 16 (01)
[3]   Emergence of scaling in random networks [J].
Barabási, AL ;
Albert, R .
SCIENCE, 1999, 286 (5439) :509-512
[4]   Synchronization in small-world systems [J].
Barahona, M ;
Pecora, LM .
PHYSICAL REVIEW LETTERS, 2002, 89 (05) :054101/1-054101/4
[5]   Synchronization in asymmetrically coupled networks with node balance [J].
Belykh, I ;
Belykh, V ;
Hasler, M .
CHAOS, 2006, 16 (01)
[6]   Blinking model and synchronization in small-world networks with a time-varying coupling [J].
Belykh, IV ;
Belykh, VN ;
Hasler, M .
PHYSICA D-NONLINEAR PHENOMENA, 2004, 195 (1-2) :188-206
[7]   Connection graph stability method for synchronized coupled chaotic systems [J].
Belykh, VN ;
Belykh, IV ;
Hasler, M .
PHYSICA D-NONLINEAR PHENOMENA, 2004, 195 (1-2) :159-187
[8]   Complex networks: Structure and dynamics [J].
Boccaletti, S. ;
Latora, V. ;
Moreno, Y. ;
Chavez, M. ;
Hwang, D. -U. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2006, 424 (4-5) :175-308
[9]   Some simple synchronization criteria for complex dynamical networks [J].
Chen, Maoyin .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2006, 53 (11) :1185-1189
[10]   Synchronization in uncertain complex networks [J].
Chen, MY ;
Zhou, DH .
CHAOS, 2006, 16 (01)