Rain, winds and haze during the Huygens probe's descent to Titan's surface

被引:414
作者
Tomasko, MG
Archinal, B
Becker, T
Bézard, B
Bushroe, M
Combes, M
Cook, D
Coustenis, A
de Bergh, C
Dafoe, LE
Doose, L
Douté, S
Eibl, A
Engel, S
Gliem, F
Grieger, B
Holso, K
Howington-Kraus, E
Karkoschka, E
Keller, HU
Kirk, R
Kramm, R
Küppers, M
Lanagan, P
Lellouch, E
Lemmon, M
Lunine, J
McFarlane, E
Moores, J
Prout, GM
Rizk, B
Rosiek, M
Rueffer, P
Schröder, SE
Schmitt, B
See, C
Smith, P
Soderblom, L
Thomas, N
West, R
机构
[1] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA
[2] US Geol Survey, Flagstaff, AZ 86001 USA
[3] Observ Paris, LESIA, F-92195 Meudon, France
[4] Univ Grenoble 1, CNRS, Lab Planetol Grenoble, F-38041 Grenoble, France
[5] Tech Univ Carolo Wilhelmina Braunschweig, D-38106 Braunschweig, Germany
[6] Max Planck Inst Solar Syst Res, D-37191 Katlenburg Lindau, Germany
[7] Texas A&M Univ, Dept Phys, College Stn, TX 77843 USA
[8] Ist Fis Spazio Interplanetario, Ist Nazl Astrofis, ARTOV, I-00133 Rome, Italy
[9] Univ Bern, Dept Phys, CH-3012 Bern, Switzerland
[10] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA
关键词
D O I
10.1038/nature04126
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The irreversible conversion of methane into higher hydrocarbons in Titan's stratosphere implies a surface or subsurface methane reservoir. Recent measurements from the cameras aboard the Cassini orbiter fail to see a global reservoir, but the methane and smog in Titan's atmosphere impedes the search for hydrocarbons on the surface. Here we report spectra and high-resolution images obtained by the Huygens Probe Descent Imager/Spectral Radiometer instrument in Titan's atmosphere. Although these images do not show liquid hydrocarbon pools on the surface, they do reveal the traces of once flowing liquid. Surprisingly like Earth, the brighter highland regions show complex systems draining into flat, dark lowlands. Images taken after landing are of a dry riverbed. The infrared reflectance spectrum measured for the surface is unlike any other in the Solar System; there is a red slope in the optical range that is consistent with an organic material such as tholins, and absorption from water ice is seen. However, a blue slope in the near-infrared suggests another, unknown constituent. The number density of haze particles increases by a factor of just a few from an altitude of 150 km to the surface, with no clear space below the tropopause. The methane relative humidity near the surface is 50 per cent.
引用
收藏
页码:765 / 778
页数:14
相关论文
共 32 条
[1]   Experimental simulation of Titan's atmosphere: Detection of ammonia and ethylene oxide [J].
Bernard, JM ;
Coll, P ;
Coustenis, A ;
Raulin, F .
PLANETARY AND SPACE SCIENCE, 2003, 51 (14-15) :1003-1011
[2]  
BERNARD JM, UNPUB ICARUS
[3]  
BOND NA, 1992, J CLIMATE, V5, P699, DOI 10.1175/1520-0442(1992)005<0699:OOPBLS>2.0.CO
[4]  
2
[5]  
Brown G. N. Jr., 1980, Advances in Cryogenic Engineering. Vol.25. Proceedings of the 1979 Cryogenic Engineering Conference, P662
[6]   FRACTAL AGGREGATES IN TITAN ATMOSPHERE [J].
CABANE, M ;
RANNOU, P ;
CHASSEFIERE, E ;
ISRAEL, G .
PLANETARY AND SPACE SCIENCE, 1993, 41 (04) :257-267
[7]   FORMATION AND GROWTH OF PHOTOCHEMICAL AEROSOLS IN TITANS ATMOSPHERE [J].
CABANE, M ;
CHASSEFIERE, E ;
ISRAEL, G .
ICARUS, 1992, 96 (02) :176-189
[8]   Experimental laboratory simulation of Titan's atmosphere:: aerosols and gas phase [J].
Coll, P ;
Coscia, D ;
Smith, N ;
Gazeau, MC ;
Ramírez, SI ;
Cernogora, G ;
Israël, G ;
Raulin, F .
PLANETARY AND SPACE SCIENCE, 1999, 47 (10-11) :1331-1340
[9]   TITANS SURFACE - COMPOSITION AND VARIABILITY FROM THE NEAR-INFRARED ALBEDO [J].
COUSTENIS, A ;
LELLOUCH, E ;
MAILLARD, JP ;
MCKAY, CP .
ICARUS, 1995, 118 (01) :87-104
[10]   Maps of Titan's surface from 1 to 2.5 μm [J].
Coustenis, A ;
Hirtzig, M ;
Gendron, E ;
Drossart, P ;
Lai, O ;
Combes, M ;
Negrao, A .
ICARUS, 2005, 177 (01) :89-105