Dynamic strength of fluid membranes

被引:27
作者
Evans, E
Heinrich, V
机构
[1] Univ British Columbia, Dept Phys, Vancouver, BC V6T 1Z1, Canada
[2] Univ British Columbia, Dept Pathol, Vancouver, BC V6T 1Z1, Canada
[3] Boston Univ, Dept Biomed Engn, Boston, MA 02215 USA
[4] Boston Univ, Dept Phys, Boston, MA 02215 USA
基金
加拿大健康研究院;
关键词
membrane rupture and permeation; edge energy-line tension; dynamic tension spectroscopy;
D O I
10.1016/S1631-0705(03)00044-6
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Rupturing fluid membrane vesicles with a steady ramp of micropipette suction yields a tension distribution that images the kinetic process of membrane failure. When plotted on a log scale of tension loading rate, the distribution peaks (membrane strengths) define a dynamic tension spectrum with distinct regimes that reflect passage of prominent energy barriers along the pathway to rupture. Demonstrated here by tests on giant PC lipid vesicles over loading rates from 0.06-60 mN/m/s, the stochastic process of rupture can be modelled as a causal sequence of two thermally-activated transitions where each transition governs membrane strength on separate scales of loading rate. Under fast ramps of tension, a steep linear regime appears in each spectrum at high strengths which implies that failure requires nucleation of a rare nanoscale defect. The slope and projected intercept yield defect size and spontaneous production rate respectively. However, under slow ramps of loading, the spectrum crosses over to a shallow-curved regime at lower strength, which is consistent with the kinetic impedance to opening an unstable hole in a fluid film. The dependence of rupture tension on rate reveals hole edge energy and frequency scale for thermal fluctuations in size. To cite this article: E. Evans, V Heinrich, C R. Physique 4 (2003). (C) 2003 Academie des sciences/Editions scientifiques et medicales Elsevier SAS. All rights reserved.
引用
收藏
页码:265 / 274
页数:10
相关论文
共 24 条
[1]  
ABIDOR IG, 1979, BIOELECTROCH BIOENER, V6, P37
[2]  
BARNER A, 1991, BIOELECTROCH BIOENER, V21, P163
[3]   PHYSICAL-PROPERTIES OF THE FLUID LIPID-BILAYER COMPONENT OF CELL-MEMBRANES - A PERSPECTIVE [J].
BLOOM, M ;
EVANS, E ;
MOURITSEN, OG .
QUARTERLY REVIEWS OF BIOPHYSICS, 1991, 24 (03) :293-397
[4]   Transient pores in stretched vesicles: role of leak-out [J].
Brochard-Wyart, F ;
de Gennes, PG ;
Sandre, O .
PHYSICA A, 2000, 278 (1-2) :32-51
[5]   THE ELECTRICAL BREAKDOWN OF CELL AND LIPID-MEMBRANES - THE SIMILARITY OF PHENOMENOLOGIES [J].
CHERNOMORDIK, LV ;
SUKHAREV, SI ;
POPOV, SV ;
PASTUSHENKO, VF ;
SOKIRKO, AV ;
ABIDOR, IG ;
CHIZMADZHEV, YA .
BIOCHIMICA ET BIOPHYSICA ACTA, 1987, 902 (03) :360-373
[6]   THE SHAPE OF LIPID MOLECULES AND MONOLAYER MEMBRANE-FUSION [J].
CHERNOMORDIK, LV ;
KOZLOV, MM ;
MELIKYAN, GB ;
ABIDOR, IG ;
MARKIN, VS ;
CHIZMADZHEV, YA .
BIOCHIMICA ET BIOPHYSICA ACTA, 1985, 812 (03) :643-655
[7]  
Deryagin BV., 1962, KOLLOID ZH, V24, P374
[8]   PHYSICAL-PROPERTIES OF SURFACTANT BILAYER-MEMBRANES - THERMAL TRANSITIONS, ELASTICITY, RIGIDITY, COHESION, AND COLLOIDAL INTERACTIONS [J].
EVANS, E ;
NEEDHAM, D .
JOURNAL OF PHYSICAL CHEMISTRY, 1987, 91 (16) :4219-4228
[9]   REVERSIBLE ELECTRICAL BREAKDOWN OF LIPID BILAYERS - FORMATION AND EVOLUTION OF PORES [J].
GLASER, RW ;
LEIKIN, SL ;
CHERNOMORDIK, LV ;
PASTUSHENKO, VF ;
SOKIRKO, AI .
BIOCHIMICA ET BIOPHYSICA ACTA, 1988, 940 (02) :275-287
[10]   MECHANICAL-PROPERTIES OF VESICLES .2. A MODEL FOR OSMOTIC SWELLING AND LYSIS [J].
HALLETT, FR ;
MARSH, J ;
NICKEL, BG ;
WOOD, JM .
BIOPHYSICAL JOURNAL, 1993, 64 (02) :435-442