Some theoretical and computational aspects of the inclusion of proton isomerism in the protonation equilibrium of proteins

被引:113
作者
Baptista, AM [1 ]
Soares, CM [1 ]
机构
[1] Univ Nova Lisboa, Inst Tecnol Quim & Biol, P-2781901 Oeiras, Portugal
关键词
D O I
10.1021/jp002763e
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The present article discusses some aspects concerning the inclusion of proton isomerism in simulations of the global protonation equilibrium of protein molecules. In the context of continuum electrostatic methods, the usual basis for these simulations, this isomerism can be treated as a coexistence of tautomeric forms in equilibrium in a rigid structure; furthermore, it can be formally extended to nontitrable sites with proton isomerism, such as alcohol groups and water molecules. We follow the previously adopted approach of transforming the real system of tautomeric sites into a thermodynamically equivalent one of nontautomeric pseudosites, establishing a proper relation between the two systems. The necessary energetic and entropic modifications of model compound pK(a) values are also discussed. Additionally, we discuss the new entropy term, named tautomeric entropy, that results from the explicit inclusion of tautomerism in the simulations and how it can be computed together with the occupational entropy. Simulations using tautomerism were done for hen egg white lysozyme (HEWL) using a simple set of tautomers at dihedral energy minima. A very good overall prediction of pK(a) values was obtained, presumably the best in the literature for HEWL, using a high value for the dielectric constant assigned to the protein region, is an element of (p). The explicit inclusion of water molecules treated under the extended tautomer formalism further improved the prediction, in contrast with previous works using rigid water molecules. In all calculations performed, the region with is an element of (p) approximate to 20 is shown the to be the optimal one. Some aspects of the somewhat controversial issue of the "proper" is an element of (p), value are also discussed.
引用
收藏
页码:293 / 309
页数:17
相关论文
共 92 条
[1]   Calculated protein and proton motions coupled to electron transfer:: Electron transfer from QA- to QB in bacterial photosynthetic reaction centers [J].
Alexov, EG ;
Gunner, MR .
BIOCHEMISTRY, 1999, 38 (26) :8253-8270
[2]   Incorporating protein conformational flexibility into the calculation of pH-dependent protein properties [J].
Alexov, EG ;
Gunner, MR .
BIOPHYSICAL JOURNAL, 1997, 72 (05) :2075-2093
[3]  
Allen M. P., 1987, Computer Simulation of Liquids
[4]   The determinants of pK(a)s in proteins [J].
Antosiewicz, J ;
McCammon, JA ;
Gilson, MK .
BIOCHEMISTRY, 1996, 35 (24) :7819-7833
[5]   THE NATURE OF PROTEIN DIPOLE-MOMENTS - EXPERIMENTAL AND CALCULATED PERMANENT DIPOLE OF ALPHA-CHYMOTRYPSIN [J].
ANTOSIEWICZ, J ;
PORSCHKE, D .
BIOCHEMISTRY, 1989, 28 (26) :10072-10078
[6]   PREDICTION OF PH-DEPENDENT PROPERTIES OF PROTEINS [J].
ANTOSIEWICZ, J ;
MCCAMMON, JA ;
GILSON, MK .
JOURNAL OF MOLECULAR BIOLOGY, 1994, 238 (03) :415-436
[7]   Simulation of electron-proton coupling with a Monte Carlo method:: Application to cytochrome c3 using continuum electrostatics [J].
Baptista, AM ;
Martel, PJ ;
Soares, CM .
BIOPHYSICAL JOURNAL, 1999, 76 (06) :2978-2998
[8]  
Baptista AM, 1997, PROTEINS, V27, P523, DOI 10.1002/(SICI)1097-0134(199704)27:4<523::AID-PROT6>3.0.CO
[9]  
2-B
[10]   MEASUREMENT OF THE INDIVIDUAL PK(A) VALUES OF ACIDIC RESIDUES OF HEN AND TURKEY LYSOZYMES BY 2-DIMENSIONAL H-1-NMR [J].
BARTIK, K ;
REDFIELD, C ;
DOBSON, CM .
BIOPHYSICAL JOURNAL, 1994, 66 (04) :1180-1184