Laboratory-derived friction laws and their application to seismic faulting

被引:1536
作者
Marone, C [1 ]
机构
[1] MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA 02139 USA
关键词
earthquake faults; frictional properties and constitutive laws; physics of friction; granular fault gouge; earthquake afterslip;
D O I
10.1146/annurev.earth.26.1.643
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
This paper reviews rock friction and the frictional properties of earthquake faults. The basis for rate- and state-dependent friction laws is reviewed. The friction state variable is discussed, including its interpretation as a measure of average asperity contact time and porosity within granular fault gouge. Data are summarized showing that friction evolves even during truly stationary contact, and the connection between modern friction laws and the concept of "static" friction is discussed. Measurements of frictional healing, as evidenced by increasing static friction during quasistationary contact, are reviewed, as are their implications for fault healing. Shear localization in fault gouge is discussed, and the relationship between microstructures and friction is reviewed. These data indicate differences in the behavior of bare rock surfaces as compared to shear within granular fault gouge that can be attributed to dilation within fault gouge. Physical models for the characteristic friction distance are discussed and related to the problem of scaling this parameter to seismic faults. Earthquake afterslip, its relation to laboratory friction data, and the inverse correlation between afterslip and shallow coseismic slip are discussed in the context of a model for afterslip. Recent observations of the absence of afterslip are predicted by the model.
引用
收藏
页码:643 / 696
页数:54
相关论文
共 251 条
[1]   SOURCE PARAMETERS OF SMALL EARTHQUAKES RECORDED AT 2.5 KM DEPTH, CAJON PASS, SOUTHERN CALIFORNIA - IMPLICATIONS FOR EARTHQUAKE SCALING [J].
ABERCROMBIE, R ;
LEARY, P .
GEOPHYSICAL RESEARCH LETTERS, 1993, 20 (14) :1511-1514
[2]   RUPTURE PROPAGATION WITH FINITE STRESS IN ANTIPLANE STRAIN [J].
ANDREWS, DJ .
JOURNAL OF GEOPHYSICAL RESEARCH, 1976, 81 (20) :3575-3582
[3]   Wrinkle-like slip pulse on a fault between different materials [J].
Andrews, DJ ;
Ben-Zion, Y .
JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 1997, 102 (B1) :553-571
[4]   A FAULTING MODEL FOR THE 1979 IMPERIAL-VALLEY EARTHQUAKE [J].
ARCHULETA, RJ .
JOURNAL OF GEOPHYSICAL RESEARCH, 1984, 89 (NB6) :4559-4585
[5]   CROSSOVER FROM CREEP TO INERTIAL MOTION IN FRICTION DYNAMICS [J].
BAUMBERGER, T ;
HESLOT, F ;
PERRIN, B .
NATURE, 1994, 367 (6463) :544-546
[6]   The roles of time and displacement in velocity-dependent volumetric strain of fault zones [J].
Beeler, NM ;
Tullis, TE .
JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 1997, 102 (B10) :22595-22609
[7]  
Beeler NM, 1996, B SEISMOL SOC AM, V86, P1130
[8]   THE ROLES OF TIME AND DISPLACEMENT IN THE EVOLUTION EFFECT IN ROCK FRICTION [J].
BEELER, NM ;
TULLIS, TE ;
WEEKS, JD .
GEOPHYSICAL RESEARCH LETTERS, 1994, 21 (18) :1987-1990
[9]   Frictional behavior of large displacement experimental faults [J].
Beeler, NM ;
Tullis, TE ;
Blanpied, ML ;
Weeks, JD .
JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 1996, 101 (B4) :8697-8715
[10]  
BEHR J, 1994, B SEISMOL SOC AM, V84, P826