A hybrid framework for mobile robot localization: Formulation using switching state-space models

被引:12
作者
Baltzakis, H
Trahanias, P
机构
[1] FORTH, Inst Comp Sci, Iraklion 71110, Crete, Greece
[2] Univ Crete, Dept Comp Sci, Iraklion 71409, Crete, Greece
关键词
localization; Kalman filters; hidden Markov models; switching state-space models; hybrid models;
D O I
10.1023/A:1025541126280
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we address one of the most important issues for autonomous mobile robots, namely their ability to localize themselves safely and reliably within their environments. We propose a probabilistic framework for modelling the robot's state and sensory information based on a Switching State-Space Model. The proposed framework generalizes two of the most successful probabilistic model families currently used for this purpose: the Kalman filter Linear models and the Hidden Markov Models. The proposed model combines the advantages of both models, relaxing at the same time inherent assumptions made individually in each of these existing models.
引用
收藏
页码:169 / 191
页数:23
相关论文
共 29 条
[1]  
[Anonymous], 1996, P IEEE RSJ INT C INT
[2]  
[Anonymous], CRGTR963 U TOR DEP C
[3]  
ARRAS KO, 2000, P IEEE RSJ INT C INT
[4]  
BALTZAKIS H, 2002, IEEE RSJ INT C INT R
[5]  
Bar-Shalom Yaakov., 1993, ESTIMATION TRACKING
[6]  
BENSON G, 1997, ANN INT C COMP MOL B, P27
[7]  
BURGARD W, 1998, P IEEE RSJ INT C INT
[8]  
Castellanos JA, 1998, IEEE INT CONF ROBOT, P1244, DOI 10.1109/ROBOT.1998.677271
[9]   MODELING A DYNAMIC ENVIRONMENT USING A BAYESIAN MULTIPLE HYPOTHESIS APPROACH [J].
COX, IJ ;
LEONARD, JJ .
ARTIFICIAL INTELLIGENCE, 1994, 66 (02) :311-344
[10]  
DELLAERT F, 1999, P INT C ROB AUT