Computing half-plane and strip discrepancy of planar point sets

被引:3
作者
deBerg, M [1 ]
机构
[1] UNIV UTRECHT,DEPT COMP SCI,3508 TB UTRECHT,NETHERLANDS
来源
COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS | 1996年 / 6卷 / 02期
关键词
computational geometry; computer graphics; discrepancy; dynamic;
D O I
10.1016/0925-7721(95)00010-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present efficient algorithms for two problems concerning the discrepancy of a set S of n points in the unit square in the plane. First, we describe an algorithm for maintaining the half-plane discrepancy of S under insertions and deletions of points. The algorithm runs in O(n log n) worst-case time per update, and it requires only relatively simple data structures. Second, we give an algorithm that computes the strip discrepancy of S in O(n(2) alpha(n) log n) time, where alpha(n) is the extremely slowly growing functional inverse of Ackermann's function.
引用
收藏
页码:69 / 83
页数:15
相关论文
共 18 条
[1]   SHARP UPPER AND LOWER BOUNDS ON THE LENGTH OF GENERAL DAVENPORT-SCHINZEL SEQUENCES [J].
AGARWAL, PK ;
SHARIR, M ;
SHOR, P .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1989, 52 (02) :228-274
[2]  
Aho A.V., 1974, The Design and Analysis of Computer Algorithms
[3]  
[Anonymous], P EUR COMP GRAPH C E
[4]  
Beck J., 1987, Cambridge Tracts in Mathematics, V89
[5]  
CHAZELLE B, 1993, AN S FDN CO, P392
[6]  
Cohen M. F., 1993, Radiosity and Realistic Image Synthesis
[7]  
Cook R. L., 1984, Computers & Graphics, V18, P137
[8]   STOCHASTIC SAMPLING IN COMPUTER-GRAPHICS [J].
COOK, RL .
ACM TRANSACTIONS ON GRAPHICS, 1986, 5 (01) :51-72
[9]  
Dippe M. A. Z., 1985, Computer Graphics, V19, P69, DOI 10.1145/325165.325182
[10]  
DOBKIN D, 1993, P 9 ANN S COMP GEOM, P47