One-third of the world population is infected with Mycobacterium tuberculosis and multi-drug resistant strains are rapidly evolving. The noticeable absence of a whole organism high-throughput screening system for studying the progression of tuberculosis is fast becoming the bottleneck in tuberculosis research. We successfully developed such a system using the zebrafish Mycobacterium marinum infection model, which is a well-characterized model for tuberculosis progression with biomedical significance, mimicking hallmarks of human tuberculosis pathology. Importantly, we demonstrate the suitability of our system to directly study M. tuberculosis, showing for the first time that the human pathogen can propagate in this vertebrate model, resulting in similar early disease symptoms to those observed upon M. marinum infection. Our system is capable of screening for disease progression via robotic yolk injection of early embryos and visual flow screening of late-stage larvae. We also show that this system can reliably recapitulate the standard caudal vein injection method with a throughput level of 2,000 embryos per hour. We additionally demonstrate the possibility of studying signal transduction leading to disease progression using reverse genetics at high-throughput levels. Importantly, we use reference compounds to validate our system in the testing of molecules that prevent tuberculosis progression, making it highly suited for investigating novel anti-tuberculosis compounds in vivo.
机构:
Univ Washington, Mol & Cellular Biol Grad Program, Seattle, WA 98195 USAUniv Washington, Dept Microbiol, Seattle, WA 98195 USA
Clay, Hilary
;
Volkman, Hannah E.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Washington, Mol & Cellular Biol Grad Program, Seattle, WA 98195 USAUniv Washington, Dept Microbiol, Seattle, WA 98195 USA
Volkman, Hannah E.
;
Ramakrishnan, Lalita
论文数: 0引用数: 0
h-index: 0
机构:
Univ Washington, Dept Microbiol, Seattle, WA 98195 USA
Univ Washington, Dept Immunol, Seattle, WA 98195 USA
Univ Washington, Dept Med, Seattle, WA 98195 USAUniv Washington, Dept Microbiol, Seattle, WA 98195 USA
机构:
Emory Univ, Immunol & Mol Pathogenesis Grad Program, Atlanta, GA 30322 USAUniv Washington, Dept Microbiol, Seattle, WA 98195 USA
Davis, J. Muse
;
Ramakrishnan, Lalita
论文数: 0引用数: 0
h-index: 0
机构:
Univ Washington, Dept Microbiol, Seattle, WA 98195 USA
Univ Washington, Dept Med, Seattle, WA 98195 USA
Univ Washington, Dept Immunol, Seattle, WA 98195 USAUniv Washington, Dept Microbiol, Seattle, WA 98195 USA
机构:
Univ Washington, Mol & Cellular Biol Grad Program, Seattle, WA 98195 USAUniv Washington, Dept Microbiol, Seattle, WA 98195 USA
Clay, Hilary
;
Volkman, Hannah E.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Washington, Mol & Cellular Biol Grad Program, Seattle, WA 98195 USAUniv Washington, Dept Microbiol, Seattle, WA 98195 USA
Volkman, Hannah E.
;
Ramakrishnan, Lalita
论文数: 0引用数: 0
h-index: 0
机构:
Univ Washington, Dept Microbiol, Seattle, WA 98195 USA
Univ Washington, Dept Immunol, Seattle, WA 98195 USA
Univ Washington, Dept Med, Seattle, WA 98195 USAUniv Washington, Dept Microbiol, Seattle, WA 98195 USA
机构:
Emory Univ, Immunol & Mol Pathogenesis Grad Program, Atlanta, GA 30322 USAUniv Washington, Dept Microbiol, Seattle, WA 98195 USA
Davis, J. Muse
;
Ramakrishnan, Lalita
论文数: 0引用数: 0
h-index: 0
机构:
Univ Washington, Dept Microbiol, Seattle, WA 98195 USA
Univ Washington, Dept Med, Seattle, WA 98195 USA
Univ Washington, Dept Immunol, Seattle, WA 98195 USAUniv Washington, Dept Microbiol, Seattle, WA 98195 USA