The putative cancer stem cell marker USP22 is a subunit of the human SAGA complex required for activated transcription and cell-cycle progression

被引:402
作者
Zhang, Xiao-Yong [1 ]
Varthi, Maya [1 ]
Sykes, Stephen M. [2 ]
Phillips, Charles [1 ]
Warzecha, Claude [2 ]
Zhu, Wenting [2 ]
Wyce, Anastasia [2 ]
Thorne, Alan W. [3 ]
Berger, Shelley L. [4 ]
McMahon, Steven B. [1 ]
机构
[1] Thomas Jefferson Univ, Coll Med, Kimmer Canc Ctr, Dept Canc Biol, Philadelphia, PA 19107 USA
[2] Univ Penn, Sch Med, Philadelphia, PA 19104 USA
[3] Univ Portsmouth, Portsmouth PO1 2DT, Hants, England
[4] Wistar Inst Anat & Biol, Philadelphia, PA 19104 USA
关键词
D O I
10.1016/j.molcel.2007.12.015
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Polycomb genes encode critical regulators of both normal stem cells and cancer stem cells. A gene signature that includes Polycomb genes and additional genes coregulated with Polycomb genes was recently identified. The expression of this signature has been reported to identify tumors with the cancer stem cell phenotypes of aggressive growth, metastasis, and therapy resistance. Most members of this 11 gene signature encode proteins with well-defined roles in human cancer. However, the function of the signature member USP22 remains unknown. We report that USP22 is a previously uncharacterized subunit of the human SAGA transcriptional cofactor complex. Within SAGA, USP22 deubiquitylates histone H2B. Furthermore, USP22 is recruited to specific genes by activators such as the Myc oncoprotein, where it is required for transcription. In support of a functional role within the Polycomb/cancer stem cell signature, USP22 is required for appropriate progression through the cell cycle.
引用
收藏
页码:102 / 111
页数:10
相关论文
共 65 条
[1]   Acetylation of p53 activates transcription through recruitment of coactivators/histone acetyltransferases [J].
Barlev, NA ;
Liu, L ;
Chehab, NH ;
Mansfield, K ;
Harris, KG ;
Halazonetis, TD ;
Berger, SL .
MOLECULAR CELL, 2001, 8 (06) :1243-1254
[2]   THE ORNITHINE DECARBOXYLASE GENE IS A TRANSCRIPTIONAL TARGET OF C-MYC [J].
BELLOFERNANDEZ, C ;
PACKHAM, G ;
CLEVELAND, JL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (16) :7804-7808
[3]   The polycomb protein Ring1B generates self atypical mixed ubiquitin chains required for its in vitro histone H2A ligase activity [J].
Ben-Saadon, Ronen ;
Zaaroor, Daphna ;
Ziv, Tamar ;
Ciechanover, Aaron .
MOLECULAR CELL, 2006, 24 (05) :701-711
[4]   SAGA is an essential in vivo target of the yeast acidic activator Gal4p [J].
Bhaumik, SR ;
Green, MR .
GENES & DEVELOPMENT, 2001, 15 (15) :1935-1945
[5]   Target for cancer therapy: proliferating cells or stem cells [J].
Blagosklonny, MV .
LEUKEMIA, 2006, 20 (03) :385-391
[6]   Regulation of cyclin D2 gene expression by the Myc/Max/Mad network:: Myc-dependent TRRAP recruitment and histone acetylation at the cyclin D2 promoter [J].
Bouchard, C ;
Dittrich, O ;
Kiermaier, A ;
Dohmann, K ;
Menkel, A ;
Eilers, M ;
Lüscher, B .
GENES & DEVELOPMENT, 2001, 15 (16) :2042-2047
[7]   Recruitment of HAT complexes by direct activator interactions with the ATM-related tra1 subunit [J].
Brown, CE ;
Howe, L ;
Sousa, K ;
Alley, SC ;
Carrozza, MJ ;
Tan, S ;
Workman, JL .
SCIENCE, 2001, 292 (5525) :2333-2337
[8]   Role of histone H3 lysine 27 methylation in polycomb-group silencing [J].
Cao, R ;
Wang, LJ ;
Wang, HB ;
Xia, L ;
Erdjument-Bromage, H ;
Tempst, P ;
Jones, RS ;
Zhang, Y .
SCIENCE, 2002, 298 (5595) :1039-1043
[9]   Role of Bmi-1 and Ring1A in H2A ubiquitylation and Hox gene silencing [J].
Cao, R ;
Tsukada, Y ;
Zhang, Y .
MOLECULAR CELL, 2005, 20 (06) :845-854
[10]   The c-Myc target gene network [J].
Dang, Chi V. ;
O'Donnell, Kathryn A. ;
Zeller, Karen I. ;
Nguyen, Tam ;
Osthus, Rebecca C. ;
Li, Feng .
SEMINARS IN CANCER BIOLOGY, 2006, 16 (04) :253-264