Multiobjective calibration of land surface model evapotranspiration predictions using streamflow observations and spaceborne surface radiometric temperature retrievals

被引:66
作者
Crow, WT
Wood, EF
Pan, M
机构
[1] ARS, Hydrol & Remote Sensing Lab, USDA, Beltsville, MD 20705 USA
[2] Princeton Univ, Dept Civil & Environm Engn, Environm Engn & Water Resources Program, Princeton, NJ 08544 USA
关键词
land surface modeling; multiobjective calibration; remote sensing;
D O I
10.1029/2002JD003292
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
[1] Physically based models of surface water and energy balance processes typically require a large number of soil and vegetation parameters as inputs. Accurate specification of these parameters is often difficult without resorting to calibration of model predictions against independent observations. Along with streamflow observations from gauging stations, spaceborne surface radiometric temperature retrievals offer the only independent observation of land surface model output commonly available at regional spatial scales (i.e., > 50(2) km(2)). This analysis examines the potential benefits of incorporating spaceborne radiometric surface temperature retrievals and streamflow observations in a multiobjective calibration framework to accurately constrain regional-scale model evapotranspiration predictions. Results for the VIC ( Variable Infiltration Capacity) model over the Southern Great Plains of the United States suggest that multiobjective model calibration against radiometric skin temperatures and steamflow observations can reduce error in model monthly evapotranspiration predictions by up to 20% relative to single-objective model calibration against streamflow alone.
引用
收藏
页数:12
相关论文
共 37 条
[1]   Application of a macroscale hydrologic model to estimate the water balance of the Arkansas Red River basin [J].
Abdulla, FA ;
Lettenmaier, DP ;
Wood, EF ;
Smith, JA .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1996, 101 (D3) :7449-7459
[2]   Sensitivity analysis of a land surface scheme using multicriteria methods [J].
Bastidas, LA ;
Gupta, HV ;
Sorooshian, S ;
Shuttleworth, WJ ;
Yang, ZL .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1999, 104 (D16) :19481-19490
[3]   PROPHECY, REALITY AND UNCERTAINTY IN DISTRIBUTED HYDROLOGICAL MODELING [J].
BEVEN, K .
ADVANCES IN WATER RESOURCES, 1993, 16 (01) :41-51
[4]   EFFECTIVE RESISTANCE TO SENSIBLE-HEAT AND LATENT-HEAT FLUX IN HETEROGENEOUS TERRAIN [J].
BLYTH, EM ;
DOLMAN, AJ ;
WOOD, N .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 1993, 119 (511) :423-442
[5]   Land data assimilation with satellite measurements for the estimation of surface energy balance components and surface control on evaporation [J].
Boni, G ;
Entekhabi, D ;
Castelli, F .
WATER RESOURCES RESEARCH, 2001, 37 (06) :1713-1722
[6]   Calibrating a soil water and energy budget model with remotely sensed data to obtain quantitative information about the soil [J].
Burke, EJ ;
Gurney, RJ ;
Simmonds, LP ;
Jackson, TJ .
WATER RESOURCES RESEARCH, 1997, 33 (07) :1689-1697
[7]   ESTIMATING SOIL HYDRAULIC PARAMETERS USING PASSIVE MICROWAVE DATA [J].
CAMILLO, PJ ;
ONEILL, PE ;
GURNEY, RJ .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1986, 24 (06) :930-936
[8]   Hydrologic effects of frozen soils in the upper Mississippi River basin [J].
Cherkauer, KA ;
Lettenmaier, DP .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1999, 104 (D16) :19599-19610
[9]   A STATISTICAL EXPLORATION OF THE RELATIONSHIPS OF SOIL-MOISTURE CHARACTERISTICS TO THE PHYSICAL-PROPERTIES OF SOILS [J].
COSBY, BJ ;
HORNBERGER, GM ;
CLAPP, RB ;
GINN, TR .
WATER RESOURCES RESEARCH, 1984, 20 (06) :682-690
[10]   Real-time and retrospective forcing in the North American Land Data Assimilation System (NLDAS) project [J].
Cosgrove, BA ;
Lohmann, D ;
Mitchell, KE ;
Houser, PR ;
Wood, EF ;
Schaake, JC ;
Robock, A ;
Marshall, C ;
Sheffield, J ;
Duan, QY ;
Luo, LF ;
Higgins, RW ;
Pinker, RT ;
Tarpley, JD ;
Meng, J .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2003, 108 (D22)